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I. INTRODUCTION

This report is designed to be a systematic development of
some new techniques for analyzing structural vibrations and the
interactions between sound fields and structural vibrations.
In its application to structural vibration, the approach is
quite new, having been motivated by the lengthening roster of
difficult questions concerning vibrations in very complicated
structures -- buildings, missiles, ocean vessels, etc. -- which
are caused by a complicated set of forces. The new techniques
rely upon an old trick: to make a "difficult" problem "easy",
ask the easy questions. It is astounding how often the answers
to easy questions will suffice.

In the classical approach to a vibration problem, one
usually asks, "What is the dynamic displacement of a particular
point at a particular instant?" Now, in many practical problems,
this is a most unreasonable question. As with the question
"What is the present population of China _''• , no reasonable effort
can yield an answer. Even if an answer were forthcoming, from
that ideal computer that analysts dream of, it would not be useful
because particular points and _articular instants are not really
of concern, and a collection of data for al__!lpoints and all
instants would be overwhelming.

To get a useful answer, some different question must be
posed_ let us try, "What is the average dynamic response (in a
root-mean-square sense) when that average is performed both in
space and in time?" This is better_ at least the answer is one
handy number. However, too much information has been lost in
the process. For example, the answer says nothing about the
time rate of change of response (i.e., about the frequencies
involved), and such information is often important.

The nature of the problem and some idea of the answers
desired can be brought out by describing a typical practical
situation. A very large rocket carries a moderately large
capsule inside of which are mounted, in various ways and posi-
tions, some packages of delicate electronic instruments. Too
much vibration of any one of many vacuum tubes, for example,
will cause the whole rocket to misbehave. It is thought that
the vibration may be caused by sound from the rocket engine
passing through the capsule, reverberating about inside, and
forcing the package of electronics. An estimate of the vibra-
tion generated in this manner is desired so that possible
protective modifications to the structure and the instruments
can be evaluated in a rational manner.
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The sound inside the capsule is found to be an extremely
complicated function of time. It is a more or less random
noise, although the energy is not distributed uniformly in fre-
quency. Moreover, because of the limited space in the capsule,
sound does not reach the package from any single direction. The
sound bounces around in the space, and is repeatedly directed
from many different angles, a fate which markedly affects the
spatial distribution of force on the package.

The vibratory response of the package to sound waves can
be studied in the laboratory, irradiating it with a pure-tone
wave incident from a single direction. One will then typically
find that the response at a single point fluctuates tremendously
as frequency is varied, being very large in small regions of fre-
quency near the natural mechanical resonances of the package.
Figure 1.1 is an example of the records that are obtained in
tests of this sort. At any one of these natural frequencies,
the response may vary quite considerably, depending upon the
angle from which the sound wave arrives. Finally, the magnitude
of response varies from point to point, when frequency and angle
of incidence are held fixed.

Upon inquiry, one discovers that the various electronic
elements are sensitive to vibration in various ranges of fre-
quency, and that their exact locations either are not known,
are subject to change, or are distributed widely throughout the
package. It is now evident that no exact question can be posed_
it is needless to search for exact answers, of the type we called
"classical"° Only some sort of average, statistical estimates of
response are required.

In this report we shall develop analytical procedures for
obtaining estimates of this sort. In crude outline, the pro-
cedures more or less parallel the experimental laboratory study
just described. From design drawings, one estimates the average
number of resonances expected in a moderately broad band of fre-
quency and the spatial distribution of response amplitude for a
"typical" mode of resonance. With this information, one esti-
mates the average response of a single "typical" mode to sound
waves of noise incident from many various angles. The product
of this average response per resonant mode by the average number
of modes _n a frequency band yields an estimate for the space-
time average response in that frequency band. The process is
repeated for different bands.
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Figure I.I.- Vibratory acceleration at one point of an aluminum panel exposed

to a pure-tone sound wave of constant pressure and slowly varied frequency

(20 db corresponds to a factor i0 in response).
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It is, of course_ hopeless to attempt to find the exact
characteristics of individual modes in the early phases of such
an analysis° The saving feature of this new approach is that
many of the average characteristics -- number of modes in a
frequency band, average coupling to sound incident from various
angles, etc. -- are insensitive to those details of construction
which render impossible the exact analysis.

The aims of the present study are three-fold: (i) To out-
line a conceptual framework for analyzing the vibrations of com-
plex distributed systems and the interactions of several systems.

The approach proceeds by,(a) a multi-modal description of the
vibrations of a system_ (b) characterization of the modal response
by the vibratory ene_'gy involved_ and of the interactions by
energy flux_ (c) formulation of statistical average estimates of
the dynamic parameters of various systems. (ii) To incorporate
the principal results of earlier studies of vibratory interactions
between sound fields and bending vibration fields in panel-like
structures. (iii) To establish a unified basis for continuing
research and extensions to new problems.

It is anticipated that many readers of this report will be
non-specialists in one or another of the pertinent technical
fields: acoustics, mechanical vibrations, and statistics. For
this reason, the report develops the necessary concepts of each
field from principles so fundamental as to bore the specialist.
However, some familiarity with calculus and vectors is presumed.

The simple resonator, consisting of a mass, a spring, and
a dissipative mechanism, is the analogue for response in a single
natural mode of a complicated structure. Chapter II is a study
of the response of a single resonator and of sets of resonators.
These mechanically simple problems furnish a ready opportunity
to introduce many of the fundamental concepts: spectral analysis,
mechanical impedance and its relation to energy, frequency-
dependent coupling parameters, modal density, ensemble averages,
etc.

Sound waves are discussed in Chapter Ill. From basic
principles, the treatment proceeds to those concepts later
required for analyzing the coupling between sound and structures:
acoustical energetics, sound generation and radiation impedances,
wavenumber vector and trace wavenumber, room acoustics, modal
density, reverberation, and diffuse fields.
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Structural vibrations and waves are presented in Chapter IV.
0nly bending (flexural) motion is considered_ since practical
response problems in extended structures are associated almost
exclusively with bending. The treatment closely parallels that
of sound waves in the previous chapter. An example of coupled
mechanical systems is discussed.

Sound waves and structural vibrations are finally brought
together in Chapter Vo Here_ the method for modelling struc-
tural vibration by the oscillations of a set of simple resonators
is considered in detail. The concepts of directivity and reci-
procity are introduced. From results in Chapter II_ formulas are
derived for the one-mode and multi-modal response of a general
structure to noise and diffuse sound fields.

Chapter VI considers the evaluation of coupling between
sound waves and bending vibrations of flat beams and panels.
Formulas appropriate to numerical prediction are given. Com-
parisons between experiments and theory are shown°

As a general technique, the procedures outlined in this
report are in mid-evolution. First results are but a few years
old_ refinements and extensions are matters of current research.
Chapter Vll contains a survey of the literature and current
research_ for the guidance of interested readers.
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II. THE SIMPLE RESONATOR

II.1 Introduction

Repeatedly in this text we shall require knowledge of
various characteristics of the response of the simplest reso-
nating system: a spring-mounted mass, with a "dashpot" in which
the energy of motion is dissipated. Figure II.1 shows a conven-
tional sketch of the simple resonator, with the symbols and
nomenclature that will be used.*

Of course, this particular system is seldom met in actual
vibration problems, but it serves admirably as analogue for the
motion of more complicated structures. Specifically, the ampli-
tude of response of any one natural mode of a complicated struc-
ture can be identified with the response of a suitably constructed
simple resonator. The total response of the complicated structure
can be compounded from the responses of a set of resonators cor-
responding to all its natural modes. This process is the basis
of the present study. The analytical procedures can all be
brought out in a discussion of simple resonators. This chapter
is such a discussion, starting with a single resonator and ending
with many. But, application of the procedures to practical prob-
lems requires the ability to "calculate, for example, the external
force f(t)" which corresponds to a specified sound wave. These
practical matters will be taken up in later chapters.

The simple resonator is a classical problem, and detailed
derivations of its response will be found in numerous introduc-
tory texts on mechanical and electrical oscillations.** This
chapter presumes a prior acquaintance with these details, but
not a thorough knowledge. The results will be set out here
without elaborate proofs, to serve as a ready reference for
later applications and as a convenient place to define standard
notation and symbols. The latter parts of the chapter present
aspects of the response not found in introductory texts, and
discuss the generalization to more complicated structures.

* Figures are numbered consecutively within each chapter and are
located at the end of each chapter's text.

**For a few examples, see J. P. Den Hartog, Mechanical Vibrations,
4th Ed. (McGraw-Hill Book Company_ New York_ 195_ S. H. Crandal_
Random Vibrations, Vol. 1 (The Massachusetts Institute of Tech-
nology Press, Cambridge, 1959), Chapters 1 and 4.
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Throughout, we consider only linear vibrations, involving
small displacements from the position of static equilibrium of
systems whose dynamical characteristics do not change in time.

II.2 Equations of Motion; Energy Functions

The prototype of simple resonators is a structure consist-
ing of a mass M mounted on an ideal spring of stiffness K, and
also connected to a "dashpot" which resists motion by exerting
a force proportional to velocity (Fig. II.1). The position of
the mass at any instant t is specified by its displacement x(t)
from the position of static equilibrium. In addition to the
forces between these parts of the system, there are other,
external forces f(t) that act on the mass.

The differential equation governing the instantaneous dis-
placement x(t) equates the total force acting on the mass with
the product of mass and acceleration:

_'(t) = - _(t) - Kx(t) + f(t) (II.2.1)*

where the terms on the right are, successively the resistive
force of the dashpot, the spring force, and the external force
flt). The superscript dot indicates the time derivative; hence
x(t) = v(t) is the velocity of the mass. The coefficient R is
called the resistance.

There are three energy functions associated with vibration
of the resonator: the kinetic energy T of the mass; the poten-
tmal energy U stored in the spring; Rayleigh's dissipation
function D which is a measure of the rate at which the dashpot
dissipates vibratory energy, i.e. converts it to other forms of
energy, such as heat**. The expressions for the first two are
well known:

1 v2T : M (t)
(II.2.2)

½ x2(t) .

* All equation numbers have three parts which indicate, respec-
tively, the chapter, the section within the chaoter, the
equation within the section.

**Elsewhere the dissipation function is almost universally
denoted by a capital F, either roman or script. We use D to
avoid confusion with symbols for force.
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These will sometimes be met in combination. Their sum
E _ T + U is the total energy of vibration. Their difference
L _ T - U is called the Lagrangian of the system.

The dissipation function is defined as half of the
instantaneous rate at which vibratory energy is lost from the
system. This rate of loss of energy is also called the power
dissipated, and is denoted by II. The analytical expressions
for the dissipation function and the dissipated power are
given by

2D _ II_ (-fR)v : R v2(t) . (II.2.3)

Note that it is not at all essential that the dashpot convert
vibratory energy into heat. Any mechanism whereby part of the
energy E is abstracted from the resonator, at a rate II =2D
proportional to v2(t) is perfectly well described by the, ,!

dashpot. Indeed, we shall often be concerned with "dissipation
in which the energy is carried out of the resonator in the form
of sound waves or as stress waves in other parts of the whole
structure.

The differential equation of motion can be written in
terms of the energy functions instead of the parameters M, R, K.
Lagrange's equation for the forced vibration of the simple reso-
nator is

d dT dV+ dD f(t) (II2 4)
dt dv dx d-v= " " "

It is readily verified that this is identical with Eq. II.2.1.

II.3 Averaging Notation

We digress from the course of analysis to specify some
conventions of notation. As a practical matter, one is seldom
interested in instantaneous values of force, velocity, etc.
The force and the response will generally be characterized
instead by various time average values. There is a simple
reason for this. The time average values are single numbers
which in many situations contain all the information necessary
to make engineering decisions.

As this study progresses, we shall also find it necessary
to take averages over variables other than time. For example,
we may look for the average over position on the surface of a

9



panel of the time-average of the square of vibratory displace-
ment; the time-average value is different at different points
on the surface. Or, having found the response of a structure
to excitation by a sound wave incident from a particular direc-
tion, we may look for the average response for all possible
angles of incidence. Thus we often find ourselves averaging
over three or four different variables at the same time!

In such a situation, it is very easy for notation to
conceal common sense and meaning. It is very hard to find a
notation that always avoids the turgidity of elaborate preci-
sion, on the one hand, and the confusion of ambiguous simplicity
on the other. A compromise has been adopted for this study.

Angular brackets, < >, will denote the simple (i.e., un-
weighted) average of the function enclosed. For example, the
average over all time of the square of velocity v(t) is

= T-->_limf v2(t,)d dr' • (II.3.1)
<v2(t)>

We shall call this average the mean-square velocity, and its
square root the root-mean-square or rms velocity, but we shall
not adopt any special notation for it. It may be abbreviated
to <v_> where no ambiguity is involved.

One must be more explicit when the function depends on
several variables. If f(x,t) is a function of position x as
well as time t, then the time-average will usually be denoted
<f(x,t)>_. It Ss still a function of position. The space-
average _<f(x,t)>_ remains a function of time. The space-tlme
average is writte_ <f(x,t)>x,t. Where the subscripts seem
superfluous, they may be omltted in favor of an appropriate
statement in the text.

Sometimes an average will be taken with respect to a dis-
crete index number. Thus, if M_ is the mass of the _-th struc-
tural member, where the index number _ takes on values 1,2,3,
..., then <M_>_ denotes the average mass of a member. (The
number of members may be either finite or infinite.)
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Often the averages do not extend over all possible values
of the variable. For example, suppose a structural beam is
oriented along the x-axis between the points x=O and x=L. Let
f(x) stand for the load (force per unit length) at a general
point x. When it is necessary or desirable to be explicit, we
shall add some explanatory subscript to indicate the limited
range of variable, as in these examples:

<f(x)>0<x<L <f(X)>on beam.

II.4 Natural Vibrations

Vibrations of a resonator in the absence of external forces

are called natural. Consider first a resonator with no damping.
The displacement must satisfy the differential equation

_x(t) + Kx(t) = 0 .

The general solutions for velocity v(t) and displacement x(t)
represent steady sinusoidal motion with a single frequency:

v(t) = V coS(mot + ¢)

x(t) = (V/m o) sin(mot + ,) (11.4.1)

2
mo  K/M

where V and ¢ are arbitrary constants that can be determined
from initial conditions. The natural angular frequency m has
the units radians per second] the frequency in cycles Per°second

is
The time-averaged, or mean, displacement and velocity both

vanish, of course. The mean square values do not. The average
of the square of a sine wave over an interval T which is any

integral number of half-periods, _/moSeC , is exactly 1/2_-_his
is also the long-tlme average value (i.e., the value of Eq.
II.2.1 in the limit as T-_). Thus, for the undamped natural
vibration of the simple resonator, we have mean square values

i V 2
<v2> =

<x2> = ½ v2/_ •
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Both the kinetic and potential energies fluctuate about
their average values, but their sum E is absolutely constant_
the form of the energy changes but the total amount does not.
Moreover_ the average values of T and U are equal_ so that the
average Lagrangian vanishes. The principal analytical relations
for the energy functions of an undamped resonator are:

I I V 2
<T_ = _ M<v2> = _ M

1 1 2 2
<U> = _ K<x2> = _ K V /_o = <T>

<L> = <T-U> = 0

E = T + U = <T+U> = 2<T> = M<v2> .

In the presence of damping, the total energy of natural
vibrations decreases steadily with time. Throughout_ we shall
be concerned with small damping_ in which case the natural vi-
bration is very closely approximated by a sinusoidal oscillation

at the undamped natural frequency _o_ with an amplitude that
decays exponentially with time. A measure of damping is the
loss factor

- R/ oM= R o/K .

The criterion for "small damping" is

n << I .

In typical structures, values of _ may range near lO -3 to 10 -2 .
Even when great effort has been made to increase damping by
special treatments_ it is an extremely rare structure in which

is as large as 0.I. Other measures of damping with which the
reader may be more familiar are directly related to the loss
factor. The mechanical engineer's "damping ratio" (ratio of
damping coefficient to a "critical" value) is

I
c/cc = _ _

12



the electrical engineer's "Q" is

Q= I/n .

The exact solution of Eq. 11.2.1 for damped natural vibra-
tion is

I
 n%t

v(t)=v° e cos(%t+ ¢)

- ln_0ot
x(t) = (Vo/_o) e sin(_ot + _ - sin -I In) (II.4.4)

1/2
= _ (I-_".2) _(D!

0 0 _' 0

where y_ and _ are arbitrary constants determined from initial
conditmSns. The equations describe sinusoidal vibrations with
an amplitude that decreases slowly and exponentially in time.

The frequency _i differs from the undamped natural frequency _o
by an amount which is insignificant when n is small.

Because of the damping, none of the energy functions is
constant -- not even E_ they all exhibit exponential decay and
some short-time fluctuations. Short-time averaging, over one
half-period or any integral number thereof, eliminates the
short-time fluctuations but leaves the exponential decay.
Indeed, the short-time average energies are found to be related
in the same way as for the undamped resonator_ only the gradual
decay must be added to complete the picture:

-n%t1 V 2
<v2> = _ o e

<x2> = <v2>/_2o

I 1
<T> = _ M<v2> = _ K<x2> = <U> (II._.5)

<L> = 0

<E> = <T> + <U> = 2<T> = M<v2>

13



(These expressions are approximations valid for small damping_
i.e. i/_ <<I.) Finally_ the short-time average power dissi-
pated (Eq. 11.2.3) is found to be

<-dE/dt> = <Z> = R<v2> = _oM<V2> = q_o<E>

so that the decay of energy (strictly, its short-time average
value) is described by

-4_o t
<E> = E e (11.4.6)

O

where E is the energy at time t=O. The solution for losso
factor_

= <Z>/_o<E > , (II. 4.7)

relates q to the fraction of total energy that is dissipated is

one cycle (2_/_ o seconds) of the oscillation.

The coefficient of time in Eq. II.%.6 for the decay of
energy is the decay rate

_' = q _o nepers/sec , (II._.Sa)

one neper being the dimensionless ratio equal to I/e. However,
in experimental work, it is customary to use powers of I0_
rather than of e, to express exponentially decaying functions.
Corresponding to Eq. 11.4.6 one writes

(ioO.l)- tE = EO

whence it follows that

= _.3_3 _ m o dB/sec . (II._.8b)

The decibel (dB) is a dimensionless ratio of power-like quanti-
ties equal to i/I00.I = 1/1.26.
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Another measure of damping, commonly used in acoustics, is

the reverberation time, defined as the time TR required for the_
energy level to decre----_seby 60 dB (i.e. an energy ratio of 1/10_).
It follows from Eq. II.4.8b that

_T R = 60 dB
(II. .80)

TR _ 2.2/_f ° sec

where f^=_o/2V is the natural frequency in cps. In experimental
work, t_e reverberation time is commonly inferred from the initial
decay rate on the assumption that the decay is exponential; meas-
urements over the whole 60 dB range are seldom made. This lax
usage of the precise term is a firmly established custom.

II.5 Pure-Tone Variables; Complex Convention

Some prosaic matters of notation must precede consideration
of the forced motion of a simple resonator. Response to steady
excitation by a simple harmonic ("pure tone") force is an impor-
tant special case of the general response problem. Pure tones
are idealizations of reality which are invaluable in two ways.
Many laboratory experiments and some practical problems involve
almost-pure tones. Secondly, the solutions for pure tones are
applicable to the spectral components of forces that have more
complicated dependence on time.

Throughout this text we shall use the standard complex con-
vention to denote simple harmonic variables. Suppose a force
varies harmonically in time with a frequency _ rad/sec. Then,
with complete generality, the force can be written

f(t) = A cos(_t + @) , (II.5.1)

where the amplitude A and phase angle @ are constant. In com-
plex notation, one writes the force as a complex quantity,

f'(t) = F ei_t , (II.5.2)

where F is a constant complex number; but, one means by this
notation that the physical force (a real number) is the real
part of this complex quantity:

f(t) = Re_f'(t)_ = Reef eimt_ . (11.5.3)
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The formula reduces to Eq. II.5.1 if one equates

r = A e . (II.5.4)

Moreover, if the real part of the complex variable is a
solution to the pure-tone problem, the imaginary part is also
a solution. This result is shown by the following calculations:

I_A ei_ ei_t_ = A sin(_t + _) =

A cos( t+ - =

A cos[_(t- _7) where T = 2_/_

Thus, the imaginary part differs from the real part only in
that the origin for measuring time has been shifted by a quarter
of the period of oscillations, a difference of no significance.
Of course, one must consistently use either the real or the
imaginary parts of all variables in a single problem. The usual
convention takes the real part.

The complex convention greatly simplifies calculations
since one letter, F, stands for two, A and 4, and since exponen-
tial factors are so easily differentiated and integrated. Because
the operations of taking the real and imaginary parts commute with
linear differential and integral operations, e.g.

__d Re_f'(t)_ = Re_d_ f'(t)_dt

the differential equation satisfied by the complex variable is
formally identical with the equation satisfied by the real,
physical variable.

There is one situation in which the complex notation of
pure-tone variables can lead the innocent to grief -- when the
product of two real, physical variables is required. One must
beware of simply multiplying the complex numbers!

Products of complex variables can be used, however, to
obtain the time-average of the product of the corresponding

pure-tone real variabl_s. An example of such a product is the
kinetic energy, I/2 Mv _, but more general examples involve the
product of two different variables. Consider two real, pure-
tone variables
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f(t)= F cos(_t+ ,)

v(t) = V cos(_t + _)

which may be the applied force and the velocity of response.
The product f v is the instantaneous power_ it equals a constant
part, the time-average power, and a time-varying part which is
simply harmonic with the second harmonic frequency 2_:

= ½Fvcos( - +½Pvco (2 t + ®+IT= fv

1
<IT>= <fv> = _ FV cos(_ - _) .

In complex notation, the force and velocity would be written

f'(t) = F ei¢ ei_t

v'(t) = V ei_ ei_t

it being understood that the actual physical variables, f and v,
are the real parts of these. The general mathematical theorem
for the average product of the real pure-tone variables is

<fv> = <Re f' R v' = _ Re f'v'* = _ R f'*v' (II.5.5)

where the superscript star is used to indicate the complex con-
jugate of the variable to which it is appended. The theorem is
readily demonstrated from the relations outlined above.

II.6 Forced Sinusoidal Motion_ Admittance_ Resonances

We now consider the response of the simple damped resonator
to a steady pure-tone force of arbitrary frequency. In complex
notation, the applied force and the velocity of response are
denoted

f'(t) = F ei_t (II.6.1)

v'(t) = V ei_t .

We must find V in terms of F. In general V will be complex even
if F is real. The relationship is found by substituting Eqs.
II.6.1 into the differential equation, II.2.1, a process that
eventually yields
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F = V Z (II°6o2)

where

z = R + o (II.6.3)
The exponential function of time is a common factor and cancels
OUt.

The complex function Z_ whose value depends on the driving
frequency _ is called the imDedance of the simple resonator,
It contains all the information required to compute response to
a pure-tone force_ via Eq° II.6.2. More often_ we shall desire
values for the reciprocal of Z_ called the admittance

Y=I/Z

V=FYo

Both impedance and admittance can be given interpretations
in terms of the energy functions defined in section 2. From

the rule for time averaging with complex notation_ Eq. IIo5°5_
we find the mean-square values of the real physical velocity andforce:

e{ } =I {W}½W _ ,<v2> = <[R v'(t) ]2> _ Re * = * = Vl 2

<f2> = <[Re{f' (t)}]2> = _'F, 2 .

Consider the quantity Z<v2>. When it is expanded by means of
Eqo II°6.3_ the individual terms can be identified with time-

averages of the energy functions Z _ T, and U (Eqs° II.2.2_
11.2o3). The result is

J _ Z<v2> = <_> + i2_L> . (II.6.5)

The quantity J defined by Eq. II.6.5 is sometimes called
the complex power delivered by the force to the resonator. Its

real part is seen to be the time-averaged dissipated power_ some-
times called the real Dower:

<II> = R<v2> .
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The imaginary part, called the reactive power, is proportional
to the time-averaged Lagrangian

<L> = <T-U> = ½M<v2> - ½K<x2> =

½M<v2> -½K<v2>/_ =

When the driving frequency e equals the natural frequency of
the undamped resonator, __, then <L> = 0 and the complex power J,
the impedance Z, and the _dmittance Y are all real. _Of course,
this is more readily proved directly from Eq. II.6.3.) The
equality of time-averaged kinetic and potential energies which
is implicit in the vanishing of <L> has been seen earlier to be
a feature of natural, unforced vibration of the simple resonator,
both wlth damping and without. This condition is defined as

resonance, and _o is called the resonance frequency.

Since the average values of T and U are equal at resonance,
the tlme-average of total energy is

<E> = e<T> .

It follows that the loss factor _ has the same energetic inter-
pretation for steady response at resonance as we found in Eq.
II._.7 for natural damped vibrations,

n = R/_ M = <II>/_ <E> ;O O

i.e., _ is proportional to the fraction of total energy lost in
one cycle.

The complex power J can be shown by Eqs. II.6.2 and II.6.4
to be also equal to

=z<v >=½zlvl= = = (II.6.6)

Thus the impedance Z and admittance Y are related to values of
the energy functions for unit values of rms velocity and rms
force respectively:
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Z = [<II>+ i2_<L>]<v2 > = I
(11.6o7)

Y = [<_>- i2_<L>]<f2> = I o

These relationships between impedance and admittance functions
and the response energy functions have been demonstrated here
for a single simple resonator. H:owever_ they are also valid
for the response of a general linear system with viscous dissi-
pation when the excitation is describable by a single pure-tone
variable. (The restriction requires either that the system be
driven at a single point or that f(t) be a generalized force
and v(t) a generalized velocity.) Indeed_ the proofs offered
in texts oriented to electronics all start with a general sys-
tem.*

In many situations_ the time-averaged power loss <ll>=Re(J)
is the most important factor in an analysis. Equations for this
real part corresponding to Eq. 11.6.6 are

I
<Z>= <v2> Re(Z) = <v2> R = [ Re(FV*) = <f2> Re(Y) . (II.6.8)

The real part of admittance has a special name_ the conductance_
and a symbol G_ so that]

<]I>= <f2> G . (11.6.9)

The particular importance of the real power Z resides in its
significance as the rate at which energy passes out of the
system_ having been first fed into it through the action of
the applied force. As pointed out in the discussion following
the introduction of the symbol Z in Eq. Ii,2o3_ the manner in
which this energy is "lost" is of no consequence to the analysis
of the simple resonator. The energy may be lost by conversion
to heat_ or it may pass on to other systems where it appears as
vibrational energy_ kinetic or potential. This latter example_
in which the simple resonator is a transmission system between
the source and other structures_ is the case of greater practical
interest.

*For example_ see E. A. Guillemin_ Theory of Linear Physical
Systems (John Wiley and Sons_ New York_ 19o_ Chapters 5 and 8.
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However_ we cannot always completely ignore the influence
of the reactive forces, that is, the imaginary parts of J and Y°
In particular, determination of the response amplitude of the
resonator under the action of specified forces requires know-
ledge of the magnitude of the admittance Y_ for (cf. Eq. 11.6.4)

<v2> = lYl2<f2> . (II.6.lO)

A  1otofIY( )l a function of frequency is called the
response curve.

The response curve of a simple resonator with small damping
is dominated by a single large, narrow peak at the resonance
frequency, from which the curve falls off smoothly in both direc-
tions (Fig. 11.2). The curves for all resonators are very much
alike when the admittance is written in normalized form using
loss factor and a normalized frequency ratio _:

_o MY = [Z/_oM]-I = [n + i(_- I/_)]-I (II.6.11)

where n _ R/_oM and _ _ _/_o "

The whole range of frequencies is conveniently divided into
three parts. In the resistance-controlled region near resonance,
the admittance is mainly determined by the resistance, i.e. the
dashpot. The spring forces are most important at lower driving
frequencies, in the stiffness-controlled region_ and inertial
forces predominate in the mass-controlled region at higher fre-
quencies. The boundaries between these regions are the frequen-
cies at which the real and imaginary parts of Y (or of Z) are
equal in magnitude, that is, the roots of

2 1/ )2

which are

= 1 ± ½qE (II.6.12)

in the case of small damping.
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Figure 11.2.- Resonance curve of simple resonator•
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These boundary frequencies have further significance in
relation to the magnitude of the admittance. The maximum admit-
tance occurs at the resonance frequency:

IYlmax = I/_oM q = I/R = Gma x . (11.6.13)

Since the admittance is real at resonance, it then equals the
conductance. Note that the response velocity of a resonator at
resonance bears a simple relation to the response that the mass
alone would have if driven by the same force. In the latter
case,

Vrm s = frms/_oM ,

a simple restatement of Newton's law: f=Ma. For the resonator
driven at resonance, the response

Vrm s = frms/_oMq

-i -I
is larger by the factor q . For this reason, q is called
the resonant amplification.

Now, at the frequencies bounding the resistance-controlled
region, the magnitude of the admittance is smaller than the
maximum value by a factor I/_/-2:

IYl

[_oMq_/-2 ]-1 = 1/_-2R .

On the other hand, the conductance at each boundary frequency
is smaller than its maximum value by a factor 1/2:

G Re(Y) Re(l/Z) Re(z)/Izl2 =RIYI2= = = = 1/2R . (II.6.1%)

This latter feature yields a name for the two frequencies: the
half-power points of the resonance curve. Suppose that the reso-
nator is driven by a force of constant amplitude but variable
frequency. The maximum amplltude of response obtains at resonance
where |Y| is a maximum (see Eq. 11.6.10); the power <l_>is a maxi-
mum at the same frequency (Eq. 11.6.9). At the frequencies of
the half-power points, the power dissipated is half this maximum
value.
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The frequency interval between the half-power points is a
convenient measure of the range of frequencies in which the
resonator is "sensitive" to excitatlon_ and responds freely.
For small damping, this frequency interval, the half-Dower
bandwidth, is

al/2(_) = _o = R/M rad/sec . (11.6.15)

(See Eq. 11.6.12.) Note that this bandwidth is numerically equal
to the decay rate for energy of the resonator in natural vibration
(Eq. 11o4.8). We see that the various measures of damping and
"strength of resonance" are all closely interrelated.

Numerical Example: For example_ consider a simple resonator
which_is resonant at I00 cps (200_ rad/sec) with a loss factor
_=I0 -2 -- a typical average value for structures with no special
damping treatment. We have_ then, a half-power bandwidth of

al/2 = _o = 2_ rad/sec

or I cps. The principal response to a force of adjustable fre-
quency lies in the resistance-controlled region of the response
curve between 99.5 cps and 100.5 cps. Now, if the structure is
set into oscillation and left alone_ the energy of natural vibra-
tions decays exponentially at a rate (Eq. 11.4.8).

_' = _o = 2_ neper/sec

= 4.343 _' = 27.3 dB/sec .

The energy drops to half its initial value in about 1/9 sec, or
ii cycles_ after i sec, less than 0.002 of the energy remains_
the reverberation time is 2.2 sec. These numbers may reasonably
suggest a speedy" decay_ however_ as structures come_ this one
is only moderately resonant. Note the narrow band of frequencies
to which the principal response is limited_ this particular struc-
ture knows its pitch about as well as a mediocre baritone°

11.7 Random Excltation_ Spectral Analysis

The vibratory forces acting on structures around us are
seldom steady pure tones. Indeed_ they never are, in a strict
sense, since there is always a starting time or an ending, or
some intermediate fluctuation that affects the purity of the
force. But in a more practical sense, many physical mechanisms
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are exceedingly erratic and complex, exhibiting none of the
regularity of pure tones. The noise of rockets, Jet engines,
and turbulent flow are examples. In such cases, reasonable
statistical predictions of response can be made if the charac-

teristics of the force are sufficiently steady during any one
experiment (or between repetitions of an experiment) to allow
a statistical description of it to be formed.

Even when the precise characteristics of a variable are
known, it may be convenient to pretend ignorance of some factors.
For example, at any instant t, there is a unique value of the
velocity of natural damped vibration (Eq. II._.4)

v(t) = V ° e cos(_t + 4) .

However, the short-time mean square value (Eq. II.4.5),

1V 2 -at
<v2> = _ o e

is the statistical average (ensemble average, expected value,
or expectation) of v2(t) for t--_ e--_emble of repeated experi-
ments in which _ assumes different values, every value bein_
equally probable. From another viewpoint, the rms value <v_> I/2
is the "best" estimate for the magnitude of v(t) in a single
experiment, if the value of ¢ is unknown. The statistical
average eliminates details of the response which are dependent
upon an unpredictable condition, the value of 4.

Very little statistical sophistication is required for
the present study. Our dominant interest is the ability to
predict the rms response to steady forces. Because of the
resonant nature of the structures, it is essential that we

be able to describe the "distribution in frequency" (i.e. the
frequency spectrum) of both force and response. The present
summary of the statistical analysis of complex signals is
restricted to these points of interest, and the reader is
referred elsewhere for analytical details and for other
aspects of the general topic.*

*For example, see Wt B. Davenport and W. L. Root, Random
Signals and Noise (McGraw-Hill Book Company, New York, 1958)
or the briefer treatment in S. H. Crandall, Random Vibrations,
Vol. 1 (The Massachusetts Institute of Technology Press,
Cambridge, 1959), especially Chapter 4.
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Consider a sample of finite duration of a particular force,
however complex or simple. This forcing function can be expressed
as a superposltion of steady pure-tone components, of infinite
duration, by the analytical procedures of the Fourier transform.
The components are continuously distributed in frequency_ no
finite number of discrete components is adequate to describe the
force sample. The response of a structure to this force can be
similarly described by a distribution in frequency. The relative
strengths of the components of response and of exciting force at
any one frequency are given by the admittance Y(_) (Eq. II.6.3),
since these components are steady pure tones.

The spectral description of either of these functions of
time, the exciting force or the response_ is definable operation-
ally by the process of narrow-band analysis. Let the force be
converted to an electrical signal f(t_ and directed to a narrow-
band analyzer. The first part of the analyzer is a filter that
transmits without attenuation any pure tone whose frequency lies
in a band of small width _ centered on the frequency _ the filter
attenuates completely any tone whose frequency does not lle in
the band. The second part of the analyzer is a square-law averag-

ing device whose output Ef(_,_,T) is the time-average (over the
duration T of the sample) of the square of the filter's output.

For long_ continuous functions of the type called stationary,
the output Ee_A,T) approaches a well-defined limit as longer
and longer samples are analyzed, i.e. at T-_.* That limit

Ef(_,A) : lim_ T_v__ Ef(_,a,T)

is the long-tlme mean-square value of all the components of f(t)
which have frequencies in the bandwidth a centered on _° The
spectral density of f(t) is the quantity obtained by first divid-

ing Ef_,A_ by the:bandwidth, and then taking the limit of eversmaller bandwidths-

lim Ef (8,A)/A .sf( )= 4->o

*Of course, no real signal can be truly stationary, if only
because time is limited. The consequent difficulties and
uncertainties in analysis and experiment have much practical
importance, especially in the case of short times. However,
only the ideal stationary signal is considered in this study.

26



The Units of spectral density S_(_) are the units of f2 divided
by the units of bandwidth A. _hus, the spectral density of
force has the units of (force)_/(rad/sec)_ for the spectral i
density of velocity, the units are those of (velocity)_/(rad/sec).
Often, bandwidth is expressed in cycles per Gecond (cps) instead

of rad/sec_ then Sf has the units of (force)_/cps.

Two theorems on the spectral analysis of stationary signals
are central to the present study. The first relates the mean-
square value of the total force to the spectral density:

<f2(t)> t =ySf(_) de . (II.7.1)
0

In terms of the operational description of spectral density, the
theorem merely states that the mean-square value of the force is
the sum of the mean-square values of all its components. Of
course, the same relationship between mean-square value and
spectral density holds for any other variable -- velocity, accel-
eration, etc.

The second central theorem relates the spectral densities
of the excitation and of the response of any linear system. When
a pure-tone force f(t) is applied to any linear system the
velocity of response v(t) is a pure tone of the same frequency.
The ratio of the complex amplitudes, V and F, defines the complex
admittance function for the system:

Y(e) _ V/F . (II.7.2a)

In the same way as for the simple resonator studied in the pre-
vious section, the square of the magnitude of Y relates the
mean-square values of the pure-tone v(t) and f(t):

<v2> = Iy( )12<f2>
Now, in the case of a complicated force function such as random
noise, where there are no components with discrete frequencies,
this same relationship holds for the spectral "components".
Thus, if Se(_) is the spectral density of any stationary force,
the spectral density of the response of the system is given by

Sv(_ ) = IY(_) 12 Sf(_) . (II.7.2b)
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This second fundamental theorem expresses the equality
between the ratio of spectral densities in random response and
the squared-magnitude of the pure-tone response function. On
reflection_ this is seen to be a general theorem for any two
related variables° Let v(t) and f(t) be any two variables asso-
ciated with the response of a system. In pure-tone response_
they are related by an equation like Eq. ii.7.2ao Then_ in
stationary random response_ their spectral densities are related
by Eq. !1.7.2b.

For example_ in many structural problems_ one desires to
characterize the response by the displacement or the accelera-
tion_ instead of by the velocity. At every instant_ the accel-
eration is the time derivative of velocity_ which is itself the
time derivative of amplitude. In the complex notation for pure
tones_ a single time derivative is equivalent to multiplication
by (i_). It follows directly from the second theorem that the
spectral densities of the three response quantities are_ in all
cases_ very simply and exactly related by

Sa(_ ) = 2 Sv(_ ) : _4 Sx(_ ) _ (11o7.3)

where the subscripts a and x stand for acceleration and displace-
ment.

In many circumstances_ the two theorems are combined° Let
v(t) be the response velocity to a force f(t). In the case of
pure tones_ they are related by the admittance Y(_). In the
case of stationary random noise_ the spectral densities are
related by Eq. II.7.2bo Then the mean-square response velocity
can be computed from its spectral density by a formula of the
type of Eqo 11.7.1. The result is

<v2(tl>t=f IY( )l2 sf( ) .
0

We proceed to apply these general relations to the simple reso-
nator_ investigating a variety of different excitations.
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ll.7.a. Broad-Spectrum Force_ Effective Bandwidth

Random forces characteristically have spectral densities
which are continuous functions of frequency. The simplest
example is "white noise_" whose spectral density is constant for
all frequencies. White noise is an important idealization never
met in practice. However, the spectra of actual forces are often
such broad_ reasonably flat curves that they might as well be
considered flat for the purpose of computing response. Such is
often the case for rocket and Jet noises. Let us examine quali-
tatively the approximation involved in replacing a broad spectrum
by an equivalent flat spectrum.

If the force spectrum is truly flat_ the constant value of
S_ can be taken outside the integral in Eq. 11.7.4. This sim-
plifying procedure is also justifiable_ as a good approximation,

if Sf is constant over all frequencies where the admittance is
large. The admittance of a simple resonator has been found to
be large only in a small region of frequency, a bandwidth equal
_yp_cally to a few cycles per second (Eq. 11.6.15). Moreover,
|YI _ falls off fast and smoothly on both sides of the peak, as
shown in Fig. 11.3. Therefore, unless _ has a very large peak
at some other frequency, the integral (II.7.4) is dominated by
the contributions at frequencies near resonance. Finally, we
note that |Y| is very closely symmetrical about the resonance
frequency e^, when the loss factor q is small, so that even the
slope of th_ spectrum curve will have no significant effect on
the integral. Thus we justify_ in a qualitative manner_ replac-
ing a broad spectrum S_(e) in Eq. 11.7.4 by a constant equal to

its value Sf(eo) at th$ resonance frequency.

Now_ we proceed to calculations. The mean-square response
of the simple resonator to a broad-spectrum random force is_
then, very closely equal to

<v2>= sf(eo)f IY(e)l2 de ,
0

_here Y i_ give_ in Eq. II.6.11. When it is noted that
Y(e) l = |Y(-e)| is an even function of e, the integral can

be readily performed in the complex plane (by application of
Cauchy's residue theorem) with the result:

f IYl2 de= /2RM . (IZ.Z.5)
0
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Thus, the mean-square velocity is given by

<v2> = . (II.7.6)

This simple formula will be useful throughout this study.

The mean-square values of displacement and acceleration can
be computed from their spectral densities (Eq. 11.7.3) by similar
integrals. The results are simply

<x2> = <v2>/_ 2 ,O

(II.7.7)2 2
<a2> _ _o<V >

relations which are identical with those governing response to a
pure tone at the resonance frequency _. The correspondence is
not entirely coincidental, for the response to noise of a lightly
damped resonator resembles a pure tone with nearly the resonance
frequency and with an amplitude that fluctuates slowly. The
first relation in Eq. II.7.7 is not restricted to small damping.
The second relation is an approximation for small damping in
which the main error is the neglect of a non-resonant acceleration
response. This additional acceleration, whose mean-square value is

<a,2> = <f2>/M2 ,

equals the response of the mass alone -- no spring or dashpot --
to the total_ broad-band force. It is usually negligible. The
total mean-square acceleration is the sum of the two parts.

The correspondence between response to noise and response to
a pure tone at the resonance frequency is sometimes made even more
explicit by introducing an effective rms force f defined by the
pure-tone resonance relation: e

f2 K <v2>R 2 (II 7 8)e " "

The value of the effective force is found from Eq. II.7.6. It is
given by

f2
e = Sf(_o)Ae (II.7.9)
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where A e is an effective bandwidth. The value of the effective
bandwidth of the simple resonator is found to be

! I_ i
Ae = _o q = 5"R/M = _A1/2 rad/sec , (I1.7.10)

(Here_ AT/p is the half-power bandwidth_ Eq. 11.6o15o) Equation
11o7o9 i_d_cates that the effective force equals the rms value

of those components of the actual force that lie in a band &e
centered on the resonance frequency. Such a band is sketched in
Fig. 11.3.

Finally_ consider the energetics of the simple resonator
driven by a broad-spectrum force° From simple time averages of
the fi _ . . ._notantaneous relations in Eqs II.2 2 and II 2.3_ we can
find the time averages of kinetic energy T_ potential energy U_
and power Ii:

<T> = _M<v2>

_K I. 2. 2.<U> = <12> = [m_o<X _ = <T> (ll.7.11a)

<Z > = R<v2>

The equality of kinetic and potential energies follows from
Eqo II.7o7. Expressions for total energy E_ Lagrangian L_ and
loss factor _ follow directly:

<E> = <T> + <u> = 2<T> = M<v2>

<L> = <T> - <U> = 0 (IX.7ollb)

= R/_oM = <Z>/_o<E> .

All of these relations are identical to those found for response

to a pure-tone force at the resonance frequency.

Numerical Example: As an example of the relations developed
in this section_ consider a simple resonator which is resonant at
I00 cps with a loss factor D=IO-_ and with a mass of I_0 kg.
Suppose it to be excited by a broad-spectrum random noise° The
applied force is measured] a calibrated transducer creates an
electrical signal proportional to force_ which is filtered and
metered, An rms force of 105 dynes (0o225 Ib) is measured for
a filter bandwidth of I0 cps centered on I00 cps.
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This measurement includes all components of Sf in the range
from 95 to 105 cps. On the assumption that the force spectrum
is flat in this region, one computes

210_

I0I0 dynes 2 = Sf(mo) I dm
180_

Sf _ i09/2_ dyne2/(rad/sec) .

The effective bandwidth (Eq. 11.7.10) is

Ae = ½_oq = _2 rad/sec .

Thus, the rms effective force (Eq. 11.7.9) is

% x 104 dynes

or 0.09 lb. The resistance R is to be found from the loss factor
and mass:

R = q_o M = 2_ x 103 dyne sec/cm

in cgs units. The rms velocity of response is, then,

<v2> I/2 = fe/R = 6.3 cm/sec

and the displacement and acceleration are

<x2> I/2 = <v2>i/2/_ _ I0 -2 cm
O

<a2> I/2 _ mo<V2> I/2 _ 4 x 103 cm/sec 2

or 4 "g", i.e. 4 times the standard acceleration of gravity.
The power absorbed by the resonator is
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<_>= R<v2> = f_/R° = 2.5 x 105 erg/sec

or 1/40 watt.

The calculated acceleration does not include the non-
resonant contribution which is proportional to the total rms
force. (See Eq. 11.7.7 and following discussion.) However,
the usual unimportance of that contribution is readily shown
by some numbers. The non-resonant contribution would equal the
calculated resonant contribution only if the total rms force is

<f2>I/2 = M<a2>I/2 = 4 x 106 dynes

or 9 lb. For a force with constant spectral density, equal to
the value calculated above, to have this large an rms value
requires a bandwidth

B = <f2>/Sf =
105 rad/sec

or 16,000 cpS. Seldom, if ever, does a mechanical force have
constant spectral density to such high frequencies.

II.7.b Narrow-band Force_ Dirac S-Function

The farthest extreme from a force with flat or broad spec-
trum is one whose spectrum is extremely narrow. Consider a
sequence of force spectra in which significant values are
limited to ever narrower bands of frequency, centered on some

frequency _I" In the sequence, let us hold constant the total
rms force, I.e. the area under Sf(_).

When the bandwidth of the force has been made much narrower
than the bandwidth of the resonator to which it is applied, the

force is effectively a pure-tone of frequency _I. The word
"effectivel_' is a hedge, because the force retains some random
character. It can be described as a sine wave whose frequency

fluctuates slightly within the bandwidth centered on _I, and
whose amplitude fluctuates slowly around the rms valueT But the
fluctuations are so slow that the response follows them quasi-
steadily, i.e. the instantaneous amplitudes of force and response
are governed by the pure-tone relations pertinent to the fre-

quency _I of the force.
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The mathematical expression of this situation is the follow-
ing. When the bandwidth of the force spectrum is small compared
with the bandwidth of admittance, the admittance can be considered
constant in the integral (Eq. II.7.3) for response:

IY( I) 12<f2> ,

which is the pure-tone relation (Eq. II.6.10).

The mathematical notation of the spectral density, in the
limit of the sequence as the bandwidth approaches zero, involves
the Dirac delta function;* one writes

Sf(_) = <f2> 8(oo_COl) . (II.7.12)

The delta function 5(x) is zero everywhere except at x=0, where
it is unlimited. However the integral of the product of a
5-function and any well-behaved "good" function G has the follow-
ing value:

_i +e

= l) , (II.7.131-£

as long as the range of integration includes the frequency e1
on which the 8-function is centered. These definitions are

readily shown to be equivalent to the calculation of <v2> given
above. The 5-function is a mathematical idealization of the
narrow band spectrum; its physical significance is revealed by
integration.

*The delta function is discussed in more detail in most texts on
Fourier or Laplace transforms; for example, see F. B. Hildebrand,
Advanced Calculus for Applications (Prentice-Hall Inc., Englewood
Cliffs, N. J., 1962), p. 63ff.
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Incidentally, the 5-function notation of the force spectrum
(Eq. 11.7.12) is just as appropriate to a steady pure tone as to
the limiting case of a random force with ever narrower bandwidth.
In fact, the two excitations are indistinguishable. From a given
sample of the signal, one cannot determine whether its amplitude
will remain steady in the future, as for the pure tone_ or will
eventually fluctuate slowly about the rms value, as for the
narrow-band random noise.

11.8 Multiple Forces

We have so far considered only the response of a single reso-
nator to various single forces. The practical situation is seldom
so simple. Very often, several forces are applied at the same
time. In other circumstances, several forces are applied individ-
ually, at different times in different experiments_ but one wants
to find an average of the responses in the various experiments.
In all cases_ our interest focuses on the long-time average re-
sponse_ both the rms value and its spectral description.

In this section we consider a number of these more complicated
situations involving averages with more than one force. The ex-

amples chosen are those with easy statistics. Fortunately, they
include idealizations of the practical situations found to be most
important.

ll.8.a. Uncorrelated Forces

Consider a single simple resonator excited by two different
forces, fl and f2j so that the total force is their sum:

f(t) = fl(t) + f2(t) . (II.8.1)

(Fig. 11.4.) We wish to compare the response to the sum with
the responses to the individual forces. First we consider the
spectral densities of the forces themselves.

For general forces_ the spectral density of the sum f will

differ from the sum of the spectral densities of the parts_ fl
and f2" We can write the spectral density of the sum in the
form

(_) + (_) + 2S12(_) (II.8 2)sf(_) Sfl sf2
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Figure 11.4.- Several forces on a resonator.
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where the "correction" term involves a function S12(_) which is
called the cross-spectral density.*

Fortunately for simple calculations, there is a large class
of forces for which the cross-spectral density vanishes. These
are the uncorrelated forces, whose cross-correlation function,
the time average

RI2(T) _ <fl(t) f2(t+T)> t , (II.8.3)

vanishes for all values of the delay time T. Two random forces
generated by independent random mechanisms are uncorrelated,
although their spectral densities can be identical. Furthermore,
two forces whose spectral densities do not overlap are also un-
correlated. This follows directly from the concept that deter-
mining spectral density is equivalent to narrow-band filtering.

In any frequency range where Sfl vanishes, the output of a filter
is independent of the presence of f_(t) at its input. Therefore,

Sf must equal Sf2 at such frequencieS, and S12 must vanish.

In summary, for two uncorrelated forces, the spectral density
of their sum equals the sum of their individual densities. As a
result, all the various mean-square properties of the response
must be expressible as similar sums. For example, consider the
mean square velocity in response to f:

<v2>=f IY( )12 sf( ) de .
0

Evidently, this equals the sum of mean-square responses to the
individual forces:

<v2> = <v_> + <v_> .

*In a more general context, the cross-spectral density of any
two variables is a complex function, of which the term defined
by Eq. II.8.2 is the real part. The imaginary part is not
required in the present context. Corresponding, the necessary

conditions for Sl_=O is that only the even part of R12 (defined
below) should vanish.
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The same is true also for the energy, power dissipated, mean-
square acceleration, etc.

These results for a pair of uncorrelated forces can be
immediately extended to the simultaneous application of any num-
ber of uncorrelated forces. If the forces are uncorrelated, the
total spectral density is the sum of the densities of individual
components:

Sf(_) = Z Sfn(_ ) . (II.8.4a)

The spectral density of response is, therefore, also a sum of
responses to individual components:

Sv(8 ) = Z Svn(_ ) . (II.8.4b)

Similarly, all quantities related to mean-square response are
given by sums:

<v2> = Z<v_>

<E> = Z<En> (II.8.4c)

<Z> = Z<_> .

In the special case of N uncorrelated forces with identical
spectra, the sums can be replaced by N times the response to
one force.

II.8.b Several Forces with Different Couplin_

An important example of the previous results is afforded
by the case where several forces are simultaneously applied to
a resonator through different coupling mechanisms. A simple
instance is illustrated in Fig. II.5, which shows the several
forces applied to points on an ideal lever (rigid and massless)
which is in contact with the mass of the resonator.

If the force applied at position z_ on the lever is denoted
q1(t), then the force on the mass due t$ this force on the lever

Just
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Figure 11.5.- Several forces with different coupling (through a lever).
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fl(t) = Hlql(t) , H 1 - Zl/_ , (II.8.5)

where _ is the length of the lever. The constant coefficient H 1
will be called the transfer function. Let the spectral density
of q._t) be denoted by S_ (_). Then, the spectral density of

fl(t)-is found directly _} application of the second fundamental
theorem, Eq. II.7.2:

= levi2Sql( ).
In the present example, the transfer function is a real number,
and the magnitude sign is superfluous.

Uncorrelated forces: Now consider the simultaneous appli-

cation of several forces q_(t) at positions z_. The total force
on the mass is the sum of _he contributions oT each component

f(t) = Z Hn qn(t) .

If the forces q_ are uncorrelated, and only then, the spectral
density of the _um is the sum of spectral densities:

Sf(_) = Z Sfn(_ ) = Z IHnl 2 Sqn(_) . (II.8.7)

The spectral density and mean-square value of response velocity
can be found from Se by application of the general theorems,
Eqs. II.7.2 and II.7.4. The expressions will involve the
admittance of the resonator, Y(_).

Uncorrelated forces with same spectrum: In an interesting

special case, all of the uncorrelated forces qn have identical
spectral densities. Such is the situation if each is derived
from a nominally identical, but independent, random mechanism.
Let N be the total number of forces and denote the sum of applied
forces by q(t):

N

q(t) = _ qn(t) . (II.8.8)
n=l
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Then the spectral density of the sum is N times the spectral
density of each,

S (_) = N S (_) ,
q qn

as noted in the previous subsection. Therefore, the spectral
density of force applied to the mass (Eq. II.8.7) can be written

Sf(_) = Sq(_)<IH nl2>n (II.8.91

where the quantity in brackets is a simple average over the
different points of application of the squares of transfer
functions:

N

=I 2<IH_I2>_ _ _ I_1 •
n=l

It follows that the spectral density of response is

s(_) = IY(_)l2 sq(_)<I_ 12>_ . (_.s._o)
The mean-square response, got by integration over frequency, can
be written

v2 (II 8.11)<v2>t= < q>t<IH_12>_ ,
where v_(t) would be the response if the total force q(t) were
applied_directly, with a unit value of transfer function.

Ensemble average: These results are capable of another
interpretation. Suppose that a single force, equal to the total
q(t), is applied to one position z on the lever. Repeat the
experiment, applying the same forc_ to different points, until
the force has been applied to each point for the same number of
times. What, then, is the average mean-square response, and what
is the average spectral density? These averages are evidently
given precisely by Eqs. 11.8.10 and 11.8.11.

Statistically speaking, the last paragraph describes an
ensemble of experiments and asks for an ensemble average. Where

the transfer function Hn varies from experiment to experiment,
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the effective value for the set of experiments is the ensemble
average, taken in a mean-square sense:

H 2
effective = <'Hn'2>n "

l I

No question of cross-correlation arises in the ensemble of ex-
periments since they are not run simultaneously.

Frequency-dependent coupling: In this sub-section, we have
calculated the response of a single resonator to a number of
random forces which have different strengths of coupling. Many
practical situations are like this, differing only in the nature
of the coupling. The present example -- coupling through a
lever -- is not representative, because the strength of coupling
is independent of frequency (Eq. 11.8.5). However, the analysis
for more general coupling would have proceeded in much the same
way, except that frequency-dependent transfer functions must be
introduced.

Both analytically and experimentally, the characteristics
of frequency-dependent coupling are determined by the pure-tone
response. Suppose that the n-th point of application of force
is tested by a pure-tone force q_(t) which, in complex notation,

has a complex amplitude _n" It Will result in a pure-tone force
on the massj fn(t), which has a complex amplitude F . The ratio
of complex amplitudes defines a complex transfer function

Hn(_) - Fn/Qn

which is, in general, a function of frequency.

Now we revert to the actual problem, in which the force
applied to the n'th point is a complex signal characterized by

its spectral density Sqn(_). It follows directly from the second
fundamental theorem on spectral analysis (Eq. II.7.2 and subse-
quent discussion) that the spectral density of the resulting force
on the mass is

Sf (_) = IHn(_)12 S (_) . (II.8.12)
n qn

This result is formally identical with Eq. 11.8.6 except for
substitution of the new, frequency-dependent transfer function.
All the other equations relating spectral densities (Eqs. II.8.7_
11.8.9, 11.8.10) are similarly valid.
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Only in the integration of the spectral density of response
velocity to get the mean-square response, does the frequency
dependence of the transfer functions affect the analysis. It is
instructive to trace out this effect for the case of a single

broad-spectrum force, qn(t).

The novel effect of frequency-dependent coupling is seen in
Eq. !1.8.12 to be a modification of the shape of the force spec-
trum, as a function of frequency. Frequency-independent coupling
only modifies the overall magnitude, without change in shape. In
many cases of interest, the change in spectrum shape has little
effect on the response. This is the case when the variations of
the transfer function are small over the narrow bandwidth of the
resonator, and when also there is no abnormally large peak in the
transfer function. Under these common circumstances, only the
value of the transfer function at the resonance frequency is im-

portant.

The analytical expression of these remarks follows. The
mean-square velocity in response to a force with the spectral
density given in Eq. 11.8.12 is (see Eq. 11.7.4)

<v2>t=f l n( )12Sqn( )IY( )12 .

When the product IH_I2 Sq_ varies but slightly in the bandwidth
of admittance Y and_has dU abnormal peaks, it can be treated as
a constant with the value that obtains at the resonance frequency

_. (Compare the identical procedure in the case of a broad-
spectrum force with unity coupling, Eq. 11.7.6.) Then, the
frequency-dependent coupling can be treated as a frequency-
independent coupling with a constant transfer function Hn(_o).
The rest of the analysis proceeds as before.

II.8.c Pure-tone Forces with Various Frequencies

A final example of multiple excitation is a resonator
excited directly by a set of pure-tone forces of different fre-
quencies, all of which have the same rms value. An individual
force is denoted

fn(t) =J2 fo cos(%t + Cn ) (II.8.13)

where the values of _n and @n are different for each force, and
fo is the common rms value of force.
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Now consider the set of forces with different frequencies.
If two forces are applied simultaneously, their cross-correlation
vanishes_ the averages over all time t_

<fl(t)f2(t+T)>t <cos( it+ l)cos( 2t+ 2T+ 2)>t ,

vanish for all values of T_ as long as _ and _o are distinct.
Therefore_ the cross-spectral densities _anish _nd the spectral
densities simply add (Eq. 11.8.4)o Evidently, it is unnecessary
to distinguish between experiments where the forces are applied
simultaneously and those where they are applied individually]
the mean-square response will be the same in each case.

We consider here a particular ensemble average problem_ in
which the forces are applied individually at a large number of

frequencies distributed uniformly in the band between _I and _2"
The response to any one force is given by the pure-tone-relation

<v_(tl>t = f2 Iy(_n)12o

The average mean-square retpt_se for all the forces is similarly
related to the average of |Y| . Because the frequencies _ are
uniformly spaced, the average over discrete frequencies co_verges
to a continuous average as the spacing is reduced, i.e. the number
of different frequencies is increased. The average response
becomes

= f2<IY(%)l<v[(t)>t,% o 2>%

- _2__ I d_ ,

where the response is averaged not only in time but also in
frequency.

Comparison of this result with the previous results for
broad-band excitation (e.g. Eq. I1.7.%) shows that
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plays a role identical to that of the spectral density S_(_) in
the previous case. We see that there is an intimate relationship
between the response to a band of noise and the average response
to pure tones in the band_ such as might be determined by slowly
sweeping the frequency of a pure-tone force through the band.

ll.8.d Multiple Resonators: Approximate Formulation

There was only one resonator in each of the previous examples,
which differed in the character of the forces causing motion. We
now turn to a case involving a large number of resonators with
different characteristics: natural frequencies, mass_ damping,
etc. However_ we assume that a single force is the ultimate
source of vibration for each resonator.

It is well known that the general vibration of a large, com-
plicated structure can be described in terms of the superpos±tion
of responses in its various natural modes, each of which has a
different resonance frequency. A single broad-spectrum force will
excite many modes. In fact, it is often difficult to rig an ex-
periment in such a way that response is limited to a single natural
mode. Except at frequencies near the lowest or fundamental reso-
nance, even pure-tone forces will generally excite significant
response in several modes. The response of each mode is governed
by the same laws as the response of a single resonator.

However_ we will not now consider the manner in which one
models the vibration of a particular complicated structure by the
vibration of a set of simple resonators. The details of modelling
depend very much upon the structure's design. Specific cases will
be taken up in later chapters. InStead, we continue to describe
each resonator as a single mass-spring-dashpot combination.

A set of many independent_ lightly-damped simple resonators
are driven simultaneously by the same force f(t). Two of the
multitude are sketched in Fig. 11.6. Each resonator is driven
through a coupling system with its individual transfer function.
These are indicated in the figure by levers, but the analysis
will treat the more general, frequency-dependent coupling which
was discussed earlier (section 8b). Thus, the spectral density
of the force applied to the mass of the k-th resonator is

Sfk(_) = IHk(_)12 Sf(_) (II.9.1)
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Figure II.6.- Two of a set of different resonators driven by the same force.
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where Hk is the transfer function for the k-th resonator and Sf
is the _pectral density of the common force f(t). (Compare
Eq. 11.8.12.) We assume that the transfer functions are slowly
varying functions of frequency.

Each resonator has a different resonance frequency _k and
can have different values of mass, stiffness, and resistance.
Since each resonator is independent of the others, its response
can be independently determined from its admittance and the
spectral density of applied force in the manner set forth pre-
viously in section 6.

The force spectrum: We wish to find the response of the
whole set of resonators (e.g._ the total vibratory energy) when
it is driven by a broad-spectrum random force. Of course, the
response is different for different forces. In order to get a
generally useful result_ we shall analyze the response for a
limited band of frequency. The spectrum of any force can be
characterized by its values in adjacent, limited bands of fre-
quency. The response spectrum in any band is proportional to
the strength of the force in the same band. Thus_ an analysis
band-by-band yields results applicable to any broad-spectrum
force.

The typical force that we consider is a band-limited force

which has a flat spectral density Sf within a limited range of

frequency_ specifically a band of w_dth W centered onside this band the spectral density is zero (Fig. 11.7 9" Out-

A moderately narrow bandwidth is desirable in order to
reveal gradual trends in the response as the center frequency
is changed. However_ if the bandwidth is too narrow, we can
expect the response to fluctuate rapidly with changes in fre-
quency_ corresponding to excitation at resonance of individual
resonators. Therefore, we restrict the force's bandwidth W to
being moderately wide, in the following two senses:

i) W is large enough to contain many resonance frequencies_
which pertain to a "typical" selection of resonators_

ii) W is large compared with the effective bandwidth of
1

each resonator, ak= _k _.
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The case illustrated in Fig. II.7 is wide in the second sense_

for W_8_ k. Moreover_ it contains 6 resonance frequencies_ which
is often found to be wide enough in the first sense. In typical
practical cases these restrictions are not very severe.

Calculation procedure: The response of any one resonator
is large when its resonance frequency lies in the band of force
and small when it lies outside. Since there are many resonances
in W, we need not worry too much about borderline cases where a
resonance lies exactly on the edge of W. (Experimentalists will
know that it is unrealistic even to speak of an exact edge to a
band-limited force.) We propose to use the following simple
calculation scheme:

i) If _k is not in W_ that resonator's response is
assumed to be zero_

ii) if _ is in W_ that resonator's response will be
calculated as if the force spectrum were flat and
W were "infinitely" broad.

Counteracting errors are produced by these two approxima-
tions. The first ignores the non-resonant response of all reso-
nators outside W_ and also the response in borderline cases.
This leads to underestimation of total response. The second

overestimates the response of those resonators with _k in W.
The net error_ and whether it be an overestimation or under-
estimation_ cannot be determined simply. Brute force calcula-
tion could be used to check specific cases. A more general and
reliable check is afforded by comparison of calculations and
experimental results_ the simple calculation scheme has met
this test on numerous occasionsj with accuracy sufficient for
good engineering predictions.

The approximation most likely to lead to grief is the
neglect of non-resonant response. The net forces acting on
different masses are all different_ because of the differing
transfer functions H k. (See Eq. 11.9.1.) It is conceivable
that numerous non-resonant resonators can be strongly excited_

because they have large H_ while the resonant ones with _k in
the force band have small_k and are lightly excited. The
total non-resonant response could exceed the resonant response
in such biased circumstances. 0nly a few physical situations
of this sort have been found.
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As a precautionary measure_ it is desirable to complement
calculations of the sort we are about to perform by separate
calculations of the total non-resonant response_ i.e. the re-

sponse in the band of all resonators whose resonance frequency
lies outside the band. It is usually a fairly simple task to
estimate the total magnitude of non-resonant response_ since it
is independent of damping and relatively insensitive to the pre-
cise locations of resonance frequencies. However_ for the
present_ let us accept the approximation inherent in the simple
calculation scheme and proceed with the arithmetic.

Analysis: We wish to find the total response of the set of
simple resonators_ all driven by the same band-limited force with

spectral density Sf. We shall find two characteristics of total
response: the total energy_ which is the sum of energies of
individual resonators_ and the total power dissipated_ which is
the sum of the individual powers. According to the simple approx-
imation_ the sums need only include resonators having their reso-
nance in the force band W.

Consider a typical resonatorj the k-th_ with _k in the band W.
Its mean square velocity is (Eq. 11.7.6).

<v_(t)> t = _Sfk(_k)/RkM k

= ½ sfIHk( k)12/RkNk ,

where we use Eq. 11.9.1. Its time-averaged energy and power dis-
sipated (Eq. 11.7.11) are

<Ek> = Mk<V_>

<IIk>= Rk<V_> .

The total energy or power for the whole set of resonators is the

sum of the E k or _k for the excited resonators alone.

Great convenience results from expressing this sum as an

average. At the same time we introduce the mean-square value
of the force (of. Eq. II.7.1)

_c + ½Wf
<f2> =JSf de = Sf W .

_C- _W
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Then_ if N denotes the total number of resonators with _k in W_
the sum for total energy can be written

(_k in W)<Ek>t _ "

The last term on the right is an average over those resonators
whose natural frequencies lie in the band:

N-l (IHkl2/Rk)= <IHk12/Rk>
inw)

The ratio N/W equals the number of resonance frequencies in W
per unit of frequency] we call it the modal density:

n(_c,W ) _ N/W . (II.9.2)

Its reciprocal represents the average frequency interval between
resonances.

In summary s we have found the response of a whole set of

resonators to excitation by a common force whose spectrum is
limited to a band W including only some of the resonance fre-

quencies. The time averages of total energy and total power
are expressible in terms of the mean-square force and average
characteristics of the resonators:

<E>t = ½_<f2> t n(_cJW)<IHkl2/Rk > (I1.9.3)
inw)

= ½ <f2>t  ( o w)<l  12jMk> ( 1.9
(_k in W)

Discussion: Since the dynamics of a collection of lever-

driven trolleys is hardly a topic of compelling interest_ the
calculations given above may seem to be but trivial manipula-
tions of routine formulas. In a sense_ the conclusion is valid,
for the manipulations are quite simple. However the results are

important. Formulas of t----hissort form the basis for predicting
the response to noise of actual multi-modal structures_ as will

be seen in later chapters. There. it is shown that such average

quantities as modal density and <IHk|2/Rk> are:
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i) relatively independent of the bandwidth W_ if
it be not too small_

ii) slowly varying functions of the center frequency
_ andc

iii) in many cases insensitive to details of construction
such as may determine the precise value of resonance
frequencies,

The rest of this study will in large part be concerned with
the development of a modal description of structural vibration
and the determination of analytical expressions for the average
quantities in particular cases.

II.9 Multiple Resonators: Precise Formulation

In the preceding approximate formulation of the multiple
resonator problem_ the accuracy of the approximations was ques-
tioned. No numerical answer was given_ as that is impossible
until the exact details of the system are specified. Instead_
reliance was placed on the tendencies for error cancellation and
on existing validations by experiment. Such an answer is not
entirely satisfyingj especially since it does not help one to
anticipate difficulties in new situations.

However an evaluation of errors which is only pertinent to
some one precisely determined system is not at all to our liking
for several reasons. We are forced to ask for information that
is unavailable in most practical situations. We have no reason
to believe the answer to be typical of all similar structures.
Finallyj that answer will change rapidly with slow changes in
the center frequency _c and bandwidth W_ because the modal density
(Eq. 11.9.2) will undergo discrete_ stepwise changes.

An escape from this dilemma is afforded us by the statistical
trick of "ensemble averaging." Instead of analyzing a single set
of resonators_ we consider an infinite ensemble of sets_ each
having similar but slightly different characteristics. We shall
then find it possible to derive a precise value for response which
is an average_ taken across the ensemble.

Of course_ the answer found in this way is not that which we
started to look for_ the ensemble average of response need not
equal the actual response of any individual set of resonators.
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Yet, in many respects, the ensemble average is more nearly the
answer we should have been looking for_ it was self-deception
to believe that we could predict_ for example_ the exact reso -
nance frequencies of a complicated structure.*

Thus, the ensemble averaging technique is an analytical
method for eliminating undesired fluctuations from the calcula-
tions. In the present case, these fluctuations arise from the
fact that a single set of resonators has only a finite modal
density. We proceed to illustrate the technique for a special
case in which every resonator has the same values of mass, loss
factor, and transfer function.

Sets of r_sonators_ ensembles: The word set will denote a
single collection of simple resonators. The single set is iden-
tified by one index number, _ in general, and the single reso-
nator within the set is identified by an additional index number,
k in general. The resonance frequencies _ of resonators in the
_-th set range from very low to indefinite_ high (i.e._ to

"infinity")• We assume that every resonator has the sa_e mass M,loss factor _, and the same constant transfer function IHI

The ensemble is an infinite collection of sets, each differ-
ing slightly in characteristics. As a practical example, a single
set of resonators may represent the bending modes of a particular
flat plate. A different set may represent another plate of the
same area but with slightly different dimensions. The ensemble_
then, represents all plates of the same area.

Ensemble averages: We are interested in computing the
ensemble average of the total response of sets of resonators,
when every set is excited by the same force. We could, then,
start with the familiar formulas for one resonator, add up the
results for all resonators of a set, and average the sums. For

example, let E_k represent the total energy of the (_k)-th reso-
nator, whose resonance frequency is _k" Then the sum

_Moreover, having once determined a precise answer for the
ensemble average, we have a basis for examining the variations
from this average that are to be expected in individual struc-
tures. See R. H. Lyon and E. Eichler, "Random Vibration of
Connected Structures" JASA 36_ No 7, PP 1344-1354, July 1964.
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E_ = Ek= 1 E_k (II.10.1)

is the total energy of response of the _-th set of resonators.
The ensemble average total energy is

lim I A
<E_>_ = A->_ A E_=l E_ . (II.I0.2)

This average involves a double summation over the energies
of individual resonators:

lim I A
<E_>_ = A-->__ Z_=I Zk=l E_k • (II.lO.3)

Now, it is much more convenient to perform these sums in a dif-
ferent order, specifically according to the magnitude of the
resonance frequencies w_ k. In this new counting procedure, we
first add the contributions of all resonators of the ensemble

having Wak in a small frequency band 5 centered on some fre-
quency w . Secondly, we take the ensemble average of these sums,
as in Eq? II.10.2. Finally_ we add the contributions from all

such frequency bands. The result is <E_>_.

Consider the second step in more detail. We assumed at the
start that each resonator has the same mass, loss factor, and
transfer function. Then all resonators with natural frequencies
in the same small band 8 will also have nearly identical values

of W_k, of R_ = qw_ M, and of K_k = W_kM. In brief, they are_k .k
dynamically nearly identical and _heir separate responses will be
indistinguishable if 8 is small enough. The double sum in
Eq. II.10.3 can then be replaced by the response of one typical
resonator with natural frequency at the center of the band, w,
multiplied by a factor equal to the total number of resonator_
in the band. In the ensemble average, the factor becomes the
ensemble average of the number of resonances that an individual

set has in the band _ centered on wo. In the notation of
Eq. II.9.2, the _-th set has

resonances in the band. Therefore the contribution of the band

to <E_>_ can be written

Eo( o)

where E o is the energy of one typical resonator with natural
frequency wo.
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Now, the third step of the modified summing procedure is
to add the contributions from all frequency bands, each having
a small width 5 but a different center frequency _ . Bytaking
more and more bands of smaller and smaller widths,°this sum
becomes equivalent to an integration over the continuous fre-

quency variable _ . In this limit_ <n_>_ becomes a continuous
function of frequency,* the ensemble-averaKe modal density:

n(_o ) _ lim . 5)>_ . .- 8-->oin(z(C_o" • (II I0 $)

The average number of resonances that a single set has in a small
band 5 centered on _ is _(_ )'5. The ensemble average of total
energy in a set can Row be w_itten as an integral over resonance
frequency

00

<E(_>(_= j= Eo(@ o) K(_o)d@ o (II.lO.5)0
O

where E (_) is the total energy of a single resonator with
naturalVfr_quency __. This integral formulation is much more
convenient for exam_nlng the average response than the double
summation of Eq. 11.10.3, although the two expressions are
completely equivalent.

A moment's reflection shows that the equivalence is widely
applicable and not at all restricted to total energy, although
the derivation was phrased in those tePms. Let E_k stand for
any characteristic of the response of an indlvlduaI resonator:
total energy, mean-square velocity, spectral density, etc. Let

stan_ for the sum over all resonators of the _-th set. Then

i_e essential restrlct_o_, that the response of an individual
ensemble average <E_>m is given by the integral of Eq. II.lO.5.

resonator depend only on its resonance frequency, is satisfied
because of the assumption that each resonator has the same mass,
loss factor, and transfer function.) We proceed to use Eq.
II.lO.5 in calculating some average spectral densities.

*A mathematician may well object to calling this a continuous
function. Without specifying the ensemble in detail, we cannot
be sure that n does not have singularities, such as would occur
if one resonator of every set had identically the same natural
frequency. At worst, n may be a generalized function with singu-
larities of the 5-function type.
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Spectral density of energy: The spectral density, at fre-
quency _, of the response velocity of a single resonator with

natural frequency _o can be written (Eqs. 11.6.11, ii.7.2a,II.7.2b):

Sv(_%)= sf(_)(IHl2/M2)y2(_;%) (II.lO.6)

where 2

Y o _ _ •
o

Here S_(_) is the spectral density at _ of the force. The spec-
tral d_nsity of the single resonator's acceleration or displace-
ment are obtained from S by multiplying or dividing by _2
(Eq. II.7.3). v

We now introduce some new concepts, the spectral densities
of energy functions. Consider, for example, the kinetic energy T
of the single resonator.* It is readily written as

T = _M<v >t = _ Sv(_ de

The integrand in brackets is the spectral density of kinetic
energy, representing the contribution to T of response components

with frequencies near _. We will denote it by ST . Spectral den-
sities for potential energy U and for power _ are defined ana-
logously. For the single resonator with natural frequency
their expressions are found by familiar relationships to be: °"

I (_o)sT(_ o) = _ M sv

I, 2- 2
1 (_]_0) _[_0/_ )M SV(_]_O) (II.lO.7)SU(_;_o) = _ K Sx =

sn(_;%) = R Sv(_;%) = _% M sv(_%)

where Sv is given by Eq. II.lO.6.

•Throughout this section, we are concerned wlth time-averages of
the energy functions, although the average with respect to time
is not explicitly indicated.

57



The values of the energy functions (T, U, and Z) for a
whole set of resonators are equal to the sums of contributions
from all resonators of the set. The same is true for the spec-
tral densities of the energy functions. Therefore we may use
the general formula, Eq. II.I0.5_ to compute their ensemble
averages.

Consider the potential energy first. The application of
Eq. 11.10.5 to S_, as given above, yields the ensemble average
value of the spectral density of a set's total potential energy:

<su(_)>_ =f s_(_;%)F(_o) d%
0

2

_ )fJ T2sf(u % ye- 2 (U;Uo) _(Uo) du o . (II.10.8)
0 M u

Note that this integral is a function only of u_ it reflects the
contributions of all resonators in a set but its value does not
involve any particular resonance frequency. At the same time,
the integral does not depend on the characteristics of the exciting
force, which appear only in the factor Sf. By introducing the
spectral density of the energy and by taking an ensemble average_
we have been able to develop a general but conceptually simple
formula of the type:

(response) = (force) x (response function).

Of course, the arithmetic may get complicated in particular
instances.

Constant modal density: An instance of great practical

importance is that where _[u ) is a constant: in the ensemble
average, the natural frequencies are equally spaced, although
any one set of resonators will exhibit fluctuations about the
average. As we shall see later, the natural frequencies of
bending modes in a flat plate are equally spaced, on the average.
In this case, Eq. 11.10.8 becomes

2

1 IHI2 7 % y2(U_Uo) (II 10.9)<su(u)>_ = g sf(u)M _ 7 du° " "0
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The integral in this equation is formally identical with that
required to obtain the mean-square velocity of a single reso-
nator excited by a broad-spectrum force (Eq. 11.7.5) The sim-
ilarity is more than a coincidence, although the physical
processes are quite different. There_ we were adding the many
different spectral components of the response of one resonator.
Here we add the spectral components at one frequency_ _, of
many different resonators. The value of the integral is

2

2__} d% = , (zI.aO.lO)
0 m

whence it follows that

= sf( )  IHI2 • (II.lO.ll)

A similar analysis can be carried through for the kinetic
energy, using the expression for ST given in Eqs. 11.10.8. The
details will not be reproduced her_. In the case of constant
modal density, the ensemble-averaged spectral density of a set's

kinetic energy, <ST(_)>_, is the same as Eq. 11.10.9 except for
the integral. The new mntegral

f y2(e]eo) de ° (II.10.12)
0

has the same total value as the oldj although it gives more weight
to resonance frequencies _ less than _ and less weight to values
greater than _.* The result

<ST(_)> _ = <SU(_)> _ (II.lO.13)

is exactly true at every frequency, for any force_ and for any
value of q.

The simplicity of these relations makes it possible to find
a simple but precise expression for the total energy of a set of
resonators driven by a force whose spectrum is limited to a band.
The total energy E is the sum of total kinetic and potential
energies. Each of these is given by the integral of its spectral
densityj and the two densities have been found to be equal. Thus_
we compute the ensemble average

_The integral is formally identical with that required to get the
mean-square displacement of a single resonator (Eq. 11.7.7).
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cO

<E>_ = <T>_ + <U>_ = 2<T>_ = 2 f <ST(e)>_d_
0

.
0

But the rms force is given by the familiar relation

<f2>t =fsf(_) de .
0

For a band-limited force, we can therefore write

de - Sf(_) d_ =
0 CO

where _ is a "center" frequency lying somewhere in the band.*
The final result for the total energy can thus be written

<f2> t I I , R M , (II.10 14)=  ,H,2/Rc c = "

where Rc is the resistance of a typical resonator which resonates
at the center frequency of the force band. Aside from differences
in notation, this ensemble-average of response energy is identical
with the previous approximate expression, Eq. 11.9.31

The corresponding analysis for total dissipated power Z starts
from the spectral density S_(_;_) given in Eqs. 11.10.7. The
results of straightforward_alculation will be given without proof.
In the ensemble average, the spectral density of power dissipated
in a set of resonators is approximately

The exact value of _c depends on the shape of Sf. That it lies
somewhere in the force band follows from the mean value theorem
for integrals.

**The integral is reduced _imDly to a standard form by transforming

to a new variable x _ (_-e_).
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2
for small damping (_<<_). Therefore the total power, found by
integrating over all _, is

= <f2>t  IHI2/M ,
a form equivalent to the previous approximate expression,
Eq. II.9._.

Discussion: Let us summarize the major conclusions at
this point. The ensemble averaging process eliminates fluctua-
tions in the total response of a set of resonators which result
from the discreteness of the natural frequencies in the set.
In consequence, it is possible to derive precise general expres-
sions for the energies of response. We have evaluated these
expressions for a particular system, whose generality is restricted

by assumptions made for simplicity of analysis: _ assumed that
every resonator has the same values of M, _, and l_l, and that the
modal density is independent of resonance frequency.

Subject to these restrictions, we have found that the results
of the simple calculation scheme (Eqs. 11.9.3 and 11.9.4) are
correct. That scheme was based on the neglect of any resonator
whose natural frequency lies outside the force band, and on an
approximate calculation for the response of the rest of them.
That these approximations should yield precise ensemble averages
in the case of some restricted systems is a reassuring conclusion.
It suggests that the simple scheme may yield good approximations
in less restricted systems.

The ensemble-averaging approach can, of course, be applied
to less restricted situations. Fo_ _xample, the extension to
cases where the transfer function IH| is not constant would be
a routine, if tedious, exercise. The effect of slow variations
in the ensemble-average modal density could also be investigated.
However, these extensions are matters for future research.
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IIl. SOUND WAVES

III. 1 Introduction

For the purposes of this course, sound is a dynamic dis-
turbance from equilibrium of the physical characteristics of a
fluid. The local pressure and temperature of the fluid fluc-
tuate from their steady values, and the position of any small
(but macroscopic) fluid element fluctuates correspondingly.
We shall require some familiarity with the laws governing the
propagation of sound through the fluid medium and with the
relationships between such measures of sound strength as the
fluctuating pressure, the energy associated with the fluctua-
tions, etc.

Sound generated in one region will propagate away, reflect
from nearby walls or structures into different paths, and quickly
redistribute itself in such complicated fashions as to harass un-
duly the analyst intent on describing it. Fortunately, several
idealized cases are close enough to reality that predictions
based on them are found to be pertinent to a wide variety of
practical situations. These idealizations are "free space", un-
bounded and uncluttered by obstacles other than the one structure
of interest, and the rectangular room. We shall study sound
waves in these two idealized regions with some care.*

III.2 Sound Wave Equation

The first task is to develop the differential equations

governing the propagation of sound. In so doing_ it will be
assumed that the fluctuations (of pressure, etc.) are small so
that only the terms linear in the sound variables need be re-
tained. Viscous forces are neglected.

Consider a fluid which is stationary in the absence of sound
fluctuations_ its physical state is described by the steady pres-

sure Po and density Po, which are assumed to be everywhere the
same. Focus attention on an element of the fluid so small that

@Detailed discussions of these and related topics will be found
in various introductory texts on acoustics. For example, see
P. M. Morse, Vibration and Sound (McGraw-Hill Book Company,
New York, 194_$ L. L. Beranek, Acoustics (McGraw-Hill Book
Company, New York, 1954)_ L. E. Kinsler and A. R. Frey,
Fundamentals of Acoustics (John Wiley and Sons, New York, 1962).
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one can never detect variations of pressure or density within it_
such an element is called a "particle" of the fluid. The static
position of the particle_ i.e. its position in the absence of
sound, will be denoted in a rectangular cartesian coordinate

system (Xl_X2,X3) by

31
(We use subscripts to distinguish the different axes.)

In the presence of sound, the pressure density, and position
of the particle will fluctuate from their static values:

total pressure: Pc + P(_l_X2_x3"t)

total density: Pc + Pl(_l_x2"_3_t)

position:xj= + , j= 1,2,3.

(Note that the static position coordinates (_l_x2_) are being
used to identify the particle, even when it h_s mov@d to a dif-
ferent position.) The fluctuation in pressure p is called the
(instantaneous) sound pressure] the change in position_ with
components %_ is-_led the (instantaneous) particle displace-
ment. The t_me derivative of particle displace-_] wi-t-h
components

uj = _j/_t = _j

is called the (instantaneous) particle velocity. (Note the use
of a superscript dot to denote a partial derivative with respect

to time.) The values of the functions p, p_ and _J or u i can be
related by three equations: Newton's law_ conservation _f mass,
and the equation of state of the fluid. From these will come
the wave equation for sound.

Consider a small rectangular volume element_ composed of
many "particles" whose static coordinates lie between the planes

x--j+ I/2_j and _ - 1/28_i, where j = i, 2_ or 3 (Fig. III.I).
In the dynamic situation, _these particles will be displaced to
varying degrees depending on their static posltion_ the volume
element defined by the particles will be changed in size and
shape. For the present case of a fluid without viscosity_ it
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STATIC POSITION DISPLACED POSITION

AB= _x" AB= _ (1 + _+---)
t 8_ 1

Figure III.i.- Displacement and distortion of a fluid volume element under the
action of sound.
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turns out that but a few of the characteristics of this dynamic
distortion are required -- specifically the average change in
particle position, and the change in volume of the element. It
will also be necessary to evaluate the average pressure exerted
on the various faces of the distorted element by the surrounding
fluid.

The center particle of the volume element, point 0 in

Fig. III.l, has coordinates (_I_x--2'_3)b_ and undergoes a displace-ment with components denoted

_j(O) j = l, 2, 3 •

Consider a typical nearby particle, with static coordinates

_k + _, k = l, 2, 3. Its displacement is slightly different,
gmven _pproximately by the first two terms of a Taylor's
expansion:

3

=  j(o) + + "".
k=l

It is evident from this formula that the average displacement
of the volume element equals the displacement of the center
particle:

j>= j(o) .

Now, the static volume Vo of the element equals the product

of the lengths of its three edges 5_j (i.e. the distances between
opposite faces):

vo = 5_ i 5_ 2 5_ 3 .

In the distorted element the volume equals the product of the

three average distances between opposite faces, for example,
between the particles A and B in Fig. III.1. These distances
are found from the Taylor's expansion to be

5_j[l + (_j/_j) + -.. ] ,

so that the distorted volume equals

V ° + 5V = Voil + (_l/_l) + ( _2/_2 ) + ( _3/_3 ) ]
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to a first approximation in small quantities. The fractional
decrease in volume is called the condensation and denoted by

s(_j)] thus, the distorted volume is

V ° + 8V = Vo(I-s ) (III.2.1)

where

-s = _ 1/_[1 + _ 2/_[2 + _ 3/_[3 "

In vector notation, the right hand side is called the divergence
of the displacement vector _, and the equation is written

-s = div _ .

(Underscoring is used to indicate vectors in this report.)

In order to evaluate the average pressure exerted on the
faces of the volume element, let the sound pressure be expanded
in Taylor's series, in the same way as the displacement % was
above. The sound pressure p at a point 7 k + ek differs from
the sound pressure at the center point 7 k by a small amount:

3

+ ... .
k=l

Some simple analysis readily shows that the average pressure
on any face equals the pressure at the center point of the

face. Thus the average pressure on the face xi=_i+i/2871
(particle A in Fig. III.I) is

p(A) = p(O) + ½8_l(_p/_l)
e

We are now ready to fit these expressions into differential
relations between the sound variables.

By Newton's law, the net force on the element due to the
pressure of the external fluid is related to the acceleration.
In the present case_ the net force is the difference between
pressures on opposite faces, multiplied by the area of the

faces. For components in the x I direction, we find:
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(p0 _l_Ta_ 3) _2_1/_t2,

or _P/_l = - Po_2_l/_t2-= - Poll "

The equations for the two other coordinate directions are the
same except for changes in the subscripts. The three equations
together are called the force equation:

_p/_j = - Po_j , j = 1,2,3_

or, in vector notation:

grad p = - po[_ = - 0o__ . (iii.2.a)

(The vector operator written "grad ( )" is called the _radient_
it yields a vector when applied to a scalar.)

A second fundamental equation results from the condition
that the mass of this volume element is conserved in its motion.
The fluid is neither created nor destroyed by the presence of
sound9 therefore volume changes are reflected in density changes.
We equate the static mass (density times volume) and the mass in
the dynamic position, using Eq. III.2.1:

Po _Xl_X25_3 = (po+Pl)_l_X25X3(1-s)

Some further manipulation, retaining only first powers of Pl and

%1 and dropping their products, leads to the continuity equation:

Pl = PoS = - 00 div ! • (III.2.3a)

After this equation is differentiated with respect to time, one
may introduce the particle velocity vector u:

Pl =-Po div 2 . (III.2.3b)

Hereafter, we shall drop the superscript bar in writing the

coordinates, xj.
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Here are two equations in the three unknown functions, sound
pressure_ particle displacement, and density fluctuation. A
third equation is required_ relating sound pressure and density
fluctuatlons_ it constitutes the dynamic equation of state. In
ideal fluids_ a small fluctuation in local pressure is reflected
instantaneously by a proportional change in local density:

p = 1 • (III.2. a)

The constant K is called the bulk modulus_ and has the units of
pressure. The ratio

P
c - P/ l= K/ o (III.2. b)

is the square of the speed of sound, as will become evident in a
moment.* In the case of ideal gases, when the sound fluctuations
take place at such a moderate rate that there is no heat flux from
the compressed gas ("adiabatic compression") the bulk modulus is
related to the ambient pressure P :o

K=TP
O J

where 7 is the ratio of specific heats of the gas. Then, the
sound speed is

c = J 7Po/p °

this is the usual formula for sound speed in a gas.

One may well anticipate that the real world does not always
satisfy such simple relations. The constant proportionality of
Eq. 111.2.4 must sometimes be replaced by differential equations,
involving derivatives with respect to time or to spatial position.
Fortunately_ the most common fluids_ air and water, very closely
satisfy the constant proportionality over a broad range of fre-
quencies. We shall generally assume that the sound speed is a
constant.

*Sound "speed" is preferred to "velocity" in order to avoid
confusion with the particle velocity.
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The three equations must now be combined. If Eq. 111.2.3
is differentiated twice with respect to time and the divergence
operation is applied to Eq. 111.2.2, the equations can be
combined:

V2p /_t2 -"dlvgradp _ = - 0o_2(divi) = 01 . (III.2._)

(The combined operator "div grad ( )" or "V2( )" is called the
Laplacian] applied to a scalar, it yields a scalar.) But the
density fluctuation 0] is proportional to the sound pressure p
and can be eliminated? There results the wave equation for
pressure:

V2p - _/c2 = o . (III.2.6)

In cartesian coordinates the Laplacian can be written as a sum
of derivatives:

V2p = Zj_2p/_x_

III.3 Plane Waves

Solutions of the wave equation for several special cases
are particularly important. The first is the plane wave_ in
which the instantaneous sound pressure is constant over any
plane perpendicular to some one straight line. Let x be the
cartesian coordinate along the normal to the planes; then, the
wave equation is simply

_2p/_x2 - _2p/c2 _t 2 = 0 . (III.3.1)

This equation has a very simple solution; the pressure is

p(x,t) = F(x-ct) + G(x+ct) , (III.3.2a)

where F(y) and G(z) can have any functional dependence whatever
and each is independent of the other.

The basis for interpreting the constant c, defined by
Eq. III.2._, as a speed of sound is now clear. The value of
(x-ct) is constant at a point which moves in the direction of
increasing values of x with a speed c. Therefore the whole
pattern of pressure fluctuation in a sound wave of the type
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F(x-ct) moves in the positive x direction with the speed c.
Correspondingly a sound component of the type G(x+ct) represents
a pattern of sound pressure which moves as a unit with speed c
in the direct of decreasing values of x.

The particle velocity of the plane wave is readily found
from the pressure by application of the force equation (III.2.2).
Since p depends only on x, the gradient of p is a vector pointing
in the x direction. The particle velocity vector has only an
x component which must satisfy

= - Po 8u/ t .

But, from the form of Eq. III.3.2a, it follows that

_O - (1/c)SF/St + (1/c)SG/St_x =

Since neither p nor u has any constant part, the combined equa-
tion can be integrated to yield

u = (llPoC)F - (1/PoC)G . (III.3.2b)

In the general case, a sound wave will undergo considerable
distortion in its propagation away from a source and around
obstacles. Plane waves represent convenient approximations to
the behavior of sound in limited regions which are not too close
to complicated boundaries nor to the source.

111.4 Pure_Tone Sound Waves

A second important special case is the steady, pure-tone
sound field in which the sound pressure at any point is a simple-
harmonic function of time. The analysis of pure-tone fields is
most readily performed if the complex convention is used for the
variables, in the manner explained in Chapter II, Section 5.
The sound pressure variable at any point r is written as a com-
plex quantity

= P(n)e
(where e is the frequency), it being understood that the real
part of the complex quantity represents the physical variable.
In general, P(r_) is a complex number whose modulus A and argument,
or "phase", @ can both vary with position:
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Thus, the physical pressure variable is the real part_

Re(Pe i_t) = A(_) cos[_t+_(_)] .

As noted in Chapter II, the complex variable satisfies the
same differential equations as the real variable. However, time
derivatives are more easily performed with the complex variable_
a single time derivative is equivalent to multiplication by i_:

8p/6t = i_p .

In the equations for pure-tone sound waves, the fluctuating
density Pl and the particle velocity vector u must also be denoted
in the complex notation. Thus the complex p[rticle velocity
vector is

= e

where U(_) is a complex vector.

With these general matters of complex notation out of the
way, we proceed to study the equations of sound propagation for
pure tones. The fundamental differential equations are:

(i) the force equation,

grad p = - i_Po _ = - ikPoC _ , (III.4.2)

with k _ _/c (compare Eq. III.2.2)_

(ii) the combination of the continuity and state equationsj

p = (iPoC/k) div (ZZZ. .3)

(Compare Eqs. III.2.3B and III.2.4b)_ and

(iii) the wave equation*,

*To one mathematically inclined, this is a Helmholtz equation,
not a "wave" equation, since it does not explicitly involve
any time dependence.
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V2p + kSp = o , k _ _/c , (III._.4)

(Compare Eq. III.2.6).

The constant k=_/c is called the wavenumber of the sound
wave which has frequency _ (sometimes called the "phase constant"
or "propagation constant"). The wavenumber plays a central role
in acoustical analysis because it establishes the scale of the
spatial variations of pressures.* In that regard it is analogous
to the frequency, which establishes the scale of temporal varia-
tions since

_2p/_t2+ 3p = o .

Pure-tone plane wave: In the particular case of a pure-tone
sound wave which is also plane, the solution for pressure becomes
particularly simple. Let x be the coordinate along the direction
normal to the planes of constant instantaneous sound pressure.
The wave equation reduces to

_2p/_x2+ k2p = 0

with a general complex solution

p(x,t) = Alei(mt-kx) + A2ei(mt+kx) (III._.5)

where A1 and A 2 are arbitrary complex constants.

*Note the form of the equations when k is used in writing the
constants. So long as we are interested solely in pressures and
velocities, k and the product pc c are the only constants. More-
over k always appears in association with a derivative operation
of the same order, so that the k's disappear if the derivatives
are rewritten as 8( )/Sy_ with yN = kx_. The product pc c is
another central paramete_ of acoOstical analysis, carrying the
formal name characteristic impedance but more usually called
"rho-c". Its units are those of pressure divided by velocity.
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Look at the first term alone. Its value is periodic in x,

being the same at any two points x a and x b for which

(Xa-Xb)= n(2/k) ,
with n any integer. (The relation exp(i2_D)=l is valid for all
integers n.) The fundamental period (2_/k) is called the wave-
length, denoted usually by _:

k : _/c _ 2_/_ . (III.4.6)

The second term is similarly periodic in x with a period equal
to the wavelength A, and thus the general solution is periodic.

The real pressure component corresponding to the first
term of Eq. III.%.5 is

Re[p] = B cos(_t-kx+@) = B cos[_-k(x-ct) ] ,

where we write B exp(i_) for the complex constant A I. The func-
tional dependence of this term is just that required of a wave
travelling in the direction of increasing x with speed c (compare
Eq. III.3.2a). Similarly, the second term corresponds to a wave
travelling in the negative x direction.

These directional properties of a plane wave of single fre-
quency are most concisely indicated by the further introduction
of some simple vector analysis. Consider the factor kx in the
first term of Eq. III.%.5. Let ,_ be the unit vector oriented in

the direction of increasing values of x, i.e., in the direction
of propagation. We define a vectorial wavenumber k (or "k-vector")
by associating the propagation direction Z, with the magnitude k:

k _ k_ .

Now, the position of any point on a plane, x=constant, can be
described by a position vector

r = X_ + Z j

where z is a vector lying in the plane. Thus, the vector z is

perpend--icular to _$- It follows that the phase factor (-kx_ can
be written vectorially as a scalar product of vectors

- kx = - k.r
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In this vector form, the product is independent of the coordi-
nates which are used to describe position.

The second term in Eq. 111.4.5 was shown to be a wave
travelling in the opposite direction (decreasing values of x),
so that a unit vector in its direction of propagation is
$' = - _. Correspondingly, its vectorial wavenumber would be
_' = - _. We see that the phase factor (+kx) of this wave
assumes a vectorial form

= = - k'.r ,

completely analogous to the first case.

In summary, any plane sound wave of frequency_=kc travel-
ling in the direction of the vector _ constitutes a sound pres-
sure

p(_,t) = A ei(_t-_'_) (III.4.7)

in conventional complex, vectorial notation. The particle
velocity associated with this wave is readily found from the
pressure by Eq. III.4.2_ in vector notation, the result is

i ( 4.8)_(_,t) = __p(_,t)/PoC = !(A/Po c) e

where _ = k_/k is the unit vector in the direction of sound
propaga--tion. Note the appearance here of the constant PoC, the
characteristic impedance. The ratio of the pressure to tne

magnitude of the particle velocity vector equals po c.

III.5 Acoustical.Energetlcs

The energy associated with a sound field in an ideal fluid
is of two sorts: kinetic energy of motion and potential energy
resulting from compression of the fluid. The strength of the
sound field varies both in time and space, and we wish to deter-
mine the corresponding variations in energy. That is, energy
density functions must be defined to describe the energy per
unit volume in terms of the acoustic variables, pressure and

particle velocity.

Throughout the development of this section we use real
notation for the acoustic variables.
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The kinetic energy of a mass m moving with instantaneous
velocity v is 1/2my 2. Similarly the kinetic energy density of
fluid with mass density p moving with instantaneous velocity u is

1 2
= . (Ill.5.I)

The distinction between instantaneous density p in the presence
of a sound wave and the average density Po need not be maintained
if the medium is stationary, since it inv61ves only small terms
of third order which we neglect.

The potential energy density equals the work, per unit
volume, done in compressing the fluid. Consider a small volume

element V o which is compressed in the presence of sound to
volumes

v = v°[l-s(t)]

where the small quantity s, the condensation, fluctuates in time
with vanishing average value (see Eq. III.2.1). The total in-
stantaneous pressure is

P=Po+P ,

where Po is the constant ambient pressure and p the sound pres-
sure. Then the work done in compressing VA from a value s=O
(i.e. ambient conditions) to a general valu_ s is given by the
integral

S
f_

W = V ° JP ds .
0

This integral involves two terms. The first term, P_s, vanishes
U • o

in a time average_ it is not, in any case, to be assocmated wlth
the sound wave since it represents work done by the ambient
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"atmospheric" pressure Pc'* The second term is identified with
the acoustic Dotential energy density:

S

U = W/V o =/p ds . (III.5.2a)
0

A relation between pressure and condensation is required.
It follows directly from the continuity equation (III.2.3a) and
the equation of state (lll.2._b), whose combination yields

2i

s = --_O/OoC

The integral is therefore very simple, and yields:

U = p2/2PoC2 . (III.5.2b)

*Comparison with a similar question in mechanics will elucidate
this neglect of the term involving Pc- Consider the dynamics
of a mass-spring system (m,k) and its vibrations about the equi-
librium position, x=O, which the mass assumes under a steady
"external" force F_. (Such a force, which may be gravitational
in origin, is sometimes called a "body force".) If the potential
energy is equated to work done on the spr_ng in a displacement x_
its value is found to be U = FAX + 1/2 kx _. That par E involving
F o will lead (through _L/_x wh_re L is the Lagrangian) to a term
F o in Lagrange's equation of motion. However, a compensating
term F o appears in Lagrange's equation as the generalized force_
the two terms cancel. Therefore, the dynamics of such a system
are correctly predicted if the steady force F o is neglected both
in the potential energy and in the generalized force_ indeed, such
is the usual procedure. A careful Justification of the neglect
of the energy term involving Pc in the acoustic case will be found
in H. Goldstein's Classical Mechanics (Addison-Wesley Publishing
Company, Reading, Mass., 1959_ section 11-3.
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The sum of acoustic kinetic and potential energy densities
is called, simply, the acoustic energy density:

= T + _ = ½(_ou2+ p2/PoC2) . (III.5.3)E

There is one other energetic quantity of interest, the
intensity. Intensity is defined as the rate of flux of energy
through a surface, per unit of surface area. The intensity is
a directed quantity, i.e. a vector function, since the flux of
energy is also directed. Consider a s_all area A oriented nor-
mal to the particle velocity vector u=_ The flux of energy 8E
through A in a small interval of time 8t equals the work done
by the fluid on the one side of A upon the fluid on the other.
Thus, we compute the work in the displacement 5_=u_t which
occurs in the time interval at:

_W = [(P0+P)A]uSt ,

so that the intensity is

(_w/_t)/A= (Po+p)u .

The first term is work done by the ambient pressure, and is not
counted as acoustic intensity_ in the absence of a steady wind,
its average value vanishes. The acoustic intensity is identi-
fied as the second term, that is

! = p_ , (iii.5._)

a vector with the direction of the particle velocity. (It is
readily seen that there is no energy flux across a surface to
which u is tangential. In general, the magnitude of the flux
through a surface whose unit normal vector is n varies as the
cosine of the angle between u and _, i.e. as the scalar product
u-n.)

Let us apply these formulas to the case of a general plane
wave travelling in the direction of increasing x coordinate.
The acoustic pressure and particle velocity were found to be

p = _(x-ct)

u = p/p C ,O
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where F can have any functional form_ and the velocity vector
has only an x-component {Eq. 111.3.2). Then it is readily shown
that

T- _po u2 = _E = _p2/PoC2 _ U ; (111 5. .5a)

i.e._ kinetic and potential energy densities are everywhere
equal. Moreover the intensity in the x direction is

pu = p2/PoC = cE . (III.5.5b)
I

Note that l=cE is valid at every point and every instant.
Now, this intensity was defined as the rate of flux of energy
density. Therefore it is evident from this equation that the
energy density of the wave is travelling in the direction of
propagation with an energy soeed equal to c, the "sound speed".

This equality must be considered a happy circumstance,
peculiar to plane sound waves and a limited number of other
cases. For, remember, the sound speed c was found to be the
speed with which the pattern of pressure distortion propagates.
That these two definitions are quite distinct is illustrated by
the homely example of a long, crawling caterpillar. One observes
in him a pattern of alternating distortion of the body which pro-
gresses forward at a speed much greater than his average speed.
Fortunately for the caterpillar, the speed of energy flux is mot
the same as the distortion wave speed, else energy would accu-
mulate unpleasantly in his head.

A more precise, scientific distinction will be delayed until
it becomes necessary, in the consideration of bending waves in
structures.

111.6 Standing Waves

The previous examples of sound waves have been progressive
or travelling waves, that is, pressure disturbances that propa-
gate continuously in a specific direction at the speed of sound.
A typical example is the plane wave whether a pure tone wave or
not.

In contrast, the pressure disturbances in a standing wave
do not propagate_ the dependence of the real sound variables
upon position and time is separable_ e.g., as
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= T(t) . (III.G1)

This description of the standing wave_ as a constant spatial
pattern of response, P(_)_ which everywhere fluctuates in the
same way T(t)_ accentuates a feature which can be recognized as
an important property of "resonances" or "natural modes of
vibration." Indeed_ standing waves find their greatest appli-
cation in the study of the acoustical resonances of rooms.

Let us construct some standing waves from the superposition
of several pure-tone plane waves. First_ add to a wave travel-
ling in the direction of increasing coordinate x a second wave
of equal amplitude travelling in the opposite direction. The
expressions for their sound pressures are

Pl = A cos (_t-kx)

P2 = A cos (_t Ä�ä�(III.6.2a)

where the origins of t and x have_ without loss of generality,
been chosen so that each signal has its maximum value at t=O_
x=0. By a standard trigonometric identity_ the total pressure
is found to be

p = pl+P2 = 2A cos _t cos kx _ (III.6.2b)

which is a one-dimensional standing wave. The corresponding
particle velocities are readily found by application of the
force equation. Let e be the unit vector in the direction of
increasing x. The particle velocity vectors are

_I = _ Pl/Po c

u2 = - p2/ oc (III.6.2c)

u = _ (2A/PoC) sin _t sin kx .

There are many interesting features that can be demon-
strated for this one dimensional standing wave. For example_
there is never any particle velocity on the plane x=O through
the origin_ nor on any of the parallel planes x=n_/2, an inte-
gral number of half-wavelengths from the first. These are
called nodal planes for the particle velocity. On the other
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hand, the sound pressure is a maximum on these planes, and
vanishes on another set of planes located at the mid-points
x = (n+I/2)_/2 between the first set. Thus, there are nodal
planes for pressure which are distinct from those for velocity.

It is well known that a plane travelling wave striking a
rigid wall at normal incidence will be reflected as a wave of
equal strength travelling in the opposite direction. If the
rigid wall is located at, say, x=O, and a pure-tone plane wave
approaches from negative values of x, the resulting steady-
state sound field is indistinguishable in the region x<O from
the solution in Eq. III.6.2. A nodal plane for a velocity
component is equivalent to a boundary condition of vanishing
velocity, i.e., a rigid wall.

Let us introduce another rigid wall at another such nodal
plane_ for example at x=-Nh/2. Once the pure-tone sound wave
has started travelling back and forth between the two walls, it
will maintain exactly the standing-wave field given by Eq. III.6.2.
(How the wave is started is an entirely different question.) Math-
ematically speaking, the standing wave is a solution to the one-
dimensional Helmholtz equation ("steady-state wave rrequation),

d2D
�k2p= 0

dx 2

subject to rigid-wall boundary conditions

u = 0 , therefore dp/dx = 0 ,

at x=O and x=-Nh/2 =- N_/k. While we are at itj we may connect
the two planes by rigid walls parallel to the x-axis_ the compo-
nent of velocity normal to the x-axis vanishes everywhere. In
this roundabout fashion, we have discovered a natural mode of a
particular rigid-walled room. A more nearly complete study of
natural modes will come later.

A sound field somewhat more complicated than the one-
dimensional standing wave is generated by the superposition of
two pure-tone plane waves of equal amplitude which travel in
directions neither parallel nor anti-parallel. Let us use the
complex convention and vector notation for their analysis.
Suppose the wavenumber vectors of the two waves lie in the
xy-plane and that each is the reflection of the other in the
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x-axis (see Fig. III.2A). The expressions for their pressures
can then be written

-A expi(_t-hl._r)--Aexpi(_t-kxX-kyy)Pl

(III. 6.3a)

--A exp i(_t-kxX+kyy )P2 J

where the k-vectors are

k I = kxe x + kyey

k 2 = kxe x - k e-- y--y ,

with the unit vectors in the x and y directions denoted by ex
and ey. The components of the k-vectors must satisfy

k2 _ k 2 + k2
x y '

and the angle 8 that each makes with the x-axis is readily shown
to satisy the relations

kx -- k cos @ ,

k = k sin e
y

The particle velocity vectors of the component waves are vectors
with the directions of the k-vectors:

_-i--(k--l/k)(Pl/Poc)
(III.S.3b)

_--2- (k_jk)(pe/poc) .

(Compare Eq. III.4.8. )

Look now to the total pressure and the total particle velo-
city vector, which are the sums of the components. Still in
complex notation, the total pressure is found to be*

*The trigonometric identity essential for this section is

iz
e = cos z + i sin z ,

whence follow

eiz + e-iz = 2 cos z ,
iz -iz

e - e = 2i sin z .
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Figure 111.2.- Wavenumber vectors for plane wave components of various two-
dimensional sound fields.
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P = Pl = 2A cos kyy exp[i(@t-kxX ) ] . (III.6.4a)

The expression for real pressure is

Re{p} = 2A cos kyy cos(@t-kxX) . (III.6.4b)

This sound field is a hybrid whose dependence on y is that of a
standing wave, but which is travelling into the positive x
direction. We note in passing that this sound field could have

been generated by the reflection of the pure-tone plane wave p 1
from a rigid plane wall on the x-axis, y=0. (The y-component
of total part$cle velocity is, by the force equation, propor-

tional to 8p/ay and vanishes on those planes where sin kyy=0.)

A two-dimensional standing wave can be generated by four
pure-tone plane waves of equal amplitude. Consider the four
waves

= A exp i(_t-Kj._) , j = 1,2_3_4_PJ

whose k vectors are the four combinations of

_j= �Œ��-- x--x-- y--y

with different pairs of signs (see Fig. III.2B). These four
vectors are the successive reflections of any one in both the
x and the y axes. They all lie in the same plane. The expres-
sion for their total sound pressure is readily found to be

p = _A cos kyy cos kxX ei_t

Re[p] = 4A cos kyy cos kxX cos _t .

In this two-dimensional standing wave the y-component of
particle velocity, proportional to 6p/_y, vanishes on the planes

sin kxY = O, kyy = nyv , my any integer_

and the x-component of velocity vanishes on the orthogonal
planes

sin kxX = O, kxX = nxV , nx any integer.

83



Moreover, the z-component of particle velocity vanishes every-
where. Just as in the case of the one-dimensional standing
wave, a rigid boundary may be substituted for any one of these
nodal planes. Indeed, a cell can be constructed from rigid
walls at two of the planes with constant y and at two of the
planes with constant x. Then this cell may be closed off by
walls at any two planes of constant z to form a rectangular
room. The sound field given by Eq. 111.6.5 is a correct solu-
tion to the steady-state boundary value problem for the room.

There are several points to note about this two-dimensional
wave. First, the standing wave is constructed from four plane
waves of equal amplitude, whose k-vectors all lie in a single
plane and which include two arbitrary directions and their two
opposites. Second_ the resulting total sound field is periodic
along both the x- and the y-axis_ the periodicities are deter-
mined by the projections of the _-vectors upon those axes. For

example_ the periodicity in x is a distance Ax such that

kxA x = 2_ .

The value of k is the projection of the k-vector on the x-axis:
X m

= l j' xl= k cosekx

where k = 2_/_ and e is the angle between the k-vector and the
x-axis. Whereas a plane progressive wave has periodicity _ in

the direction of propagation, the periodicity A x is found to be

Ax = /cosa .

The quantity kx is called a trace wavenumber, since it is the
wavenumber associated with the "trace" of the sound field upon

the x-axls. The quantity Ax is correspondingly called a trace
wavelength. (See Fig. 111.3.)

It is important to remember that the periodicity of a sound
field along an axis inclined to its direction of propagation is
determined, when appropriate, from a geometric projection of the
k-vector upon that axis. It is NOT determined by projecting the
wavelength.
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The concept of trace wavenumbers will play a central role
in the analysis of the coupling between sound and structural
vibration. The trace wavenumbers determine the spatial period-
icities of the sound pressure which exists on a plane inclined
to the direction of propagation of the sound wave. Thus_ the
spatial characteristics of the forces exerted by the sound wave
upon a structure lying in this plane are determined by the trace
wavelengths. The structural vibration excited by sound is
strongly dependent upon the distribution of forces.

As a final example of standing waves_ the analysis for a
three-dimensional one will be sketched briefly. By a straight-
forward generalization of the preceding work_ it is found that
we require eight pure-tone plane waves of equal amplitude

pj = A exp i(_t-_j._) .

Their _-vectors must have non-vanishlng components on each of
the three orthogonal coordinate axes_ and can be generated by
reflection in the three axes of any one vector_ and by reflec-
tion of its reflectlons_ they are the eight combinations with
different signs of

kj = ! kx_ x _ ky_y ! kz_ z •

The relations between the trace wavenumbers and the wave-
number k=_/c involve the direction cosines of the k-vector:

X _

where e is the angle between the k-vector and the x-axls.
Thus th_ trace wavenumbers satlsfy--the relation

k2 + k2 2 = k2
x y z

The total sound pressure is the standing wave

p = 8A cos kxX cos kyy cos kzZ ei_t . (III.6.6)

This field has three sets of nodal planes on which the normal
component _f particle velocity vanishes, each set being perpen-
dicular to one of the coordinate axes.
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III.7 Room Acoustics (Part I)

The previous considerations have pertained, by and large,
to the behavior of sound waves in unobstructed, "free" space.
Boundaries to the fluid have been ignored, except insofar as
they could be introduced post hoc, as rigid walls were intro-
duced at the nodal planes of standing waves.

We must now turn to another extreme, sound fields in rooms,
choosing as a model for careful study a perfectly rectangular
room with hard walls.* The concepts developed for such a system
will later be extended qualitatively to more realistic cases.

Consider a rectangular room with edges of length LI, Lo,
and Lq. In a cartesian coordinate system (Xl,X2,Xq), t_e r$om
can b_ oriented so that it lies in the ranges 0<xl<L], 0<x2<L 2,
0<xq<Lq. We wish to find the natural modes of _s_ilIati_n_--i.e.
t_o_ _pecial pure-tone sound fields which, once started, will
ring steadily ever after. (We assume there is no dissipation.)
These are the solutions to the acoustic wave equation for pure
tones which satisfy the boundary conditions, zero value of the
normal component of particle velocity at every wall.

Let the sound pressure associated with a typical natural
mode, the M-th, be denoted by

PM = AM@M(xI'x2'x3) exp(i_Mt) (III.7.1a)

where AM is an arbitrary constant, _M is the natural frequency,
and @M Ts a function defining the pressure pattern in space.
The sound pressure must satisfy the wave equation, which reduces
in this pure-tone case to

V2_M 2+ k_, N = 0 , kM _ _M/C . (III.7.1b)

*For a detailed review of this wave theory of room acoustics,
see P. M. Morse and R. H. Bolt, "Sound in Rooms," Reviews of

Mod. Phys., 16, No.2(April, 1944). A good summary is available
in P. M. Mors-_, Vibration and Sound (McGraw-Hill Book Company,
New York, 1948), Chapter VIII.
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The boundary conditions require the vanishing of the gradient
of pressure in a direction normal to each rigid wall. With the
subscript notation of coordinates, the boundary conditions can
be written concisely:

_M/_Xj = 0 , xj = 0 and Lj_ j = 1,2,3.

The wave equation and boundary conditions are both separable,
and the solution can be obtained by the method of separation of
variables. The typical modal solution to the wave equation (also

satisfying the boundary conditions at xj=0) is

_M = cos klX I cos k2x 2 cos k3x 3 , (III.7.2a)

subject to the relation

2 2 2 2 2 2
k I + k2 + k3 = kM _ _M/C . (III.7.2b)

The boundary conditions at xj=Lj furnish the addition restrictions

kj = mjv/Lj, mj any integer; j = 1,2,3. (III.7.2c)

The last two relations are readily combined into the frequenc¥
equation for computing the natural frequency of the M-th mode:

3

= (mj/Lj) . (III.7.3)

It is apparent that all the identifying characteristics of a mode

are determined by the three integers (ml,m2,mq) and that the pre-
viously mysterious letter M is merely s_ortha_d for the triad.
Only non-negative values of the integers are required, since

neither _M n°r _M can be distinguished by the signs of the mj.

2
The frequency equation, giving _M as a weighted sum of

squares of integers, lends itself readily to a geometric inter-
pretation. In a three-dimensional cartesian coordinate system,
plot a point with coordinates _m_(_c/L_) for particular values
of the integers (Fig. III.4). _Th@n, th_ distance from the origin
to that point equals the natural frequency _ M of that mode.
The coordinate system in which this plotting is done is usually

88



front

roomoutline--

energy flux

surfacesat which
energy leavesthe

_" _ room

the projectedareasof
exit surfaces

surfaceelement, dS--_

outward normal to dS

direction of energyflux

Figure III.4.- Geometrical constructions for evaluating mean free path.

$9



called frequency space, although no particular physical impor-
tance need be attached to the separate coordinates _o of a point.
The collection of points in frequency space for all 'the normal
modes of a room form a uniform lattice completely filling one
quadrant.

Modal Densities: The number of modes N(_) having natural
frequencies less than some value _ is readily found from this
geometrical interpretation. Let us associate with each lattice
point the rectangular volume element extending half-way to its
nearest neighbors. That volume element is the same for each
point and equals

_3c3/V ,

where V _ (LIL2L3) is Just the volume of the room itself. We
associate the same volume element with the points lying on the
flat surfaces of the octant (corresponding to modes with Just
one m_ equal to zero) and with points on the octant's edges

(corr@sponding to modes with two m_ equal to zero). Then, the
total volume filled by the element_ for points with _M<_ is

N(_) _3c3/V ,

and essentially fills the octant out to a radius _. (We say
"essentially" since the outer surface of the volume filled by
the elements is only a rectangular approximation to the smooth
sphere.) For a first approximation, one may equate the two
ways of computing the volume of a spherical octant:

N(_)_3c3/_y _ _3/6
(111.7.4)

N(_) _ _3V/6_2c 3 .

Correction terms can also be computed for the extent to which
the volume filled by the elements exceeds the octant, in a
regular manner, on the latter's flat surfaces and along its
edges. The corrections to Eq. III.7.4 are additive terms,
found to be

( 2s/16 02)+ ( p/16 0) ,

where S is the total surface area and P the total length of
edges in the room.* The true number of modes with natural

*See P. M. Morse, Vibration and Sound (McGraw-Hill Book Company,
New York, 1948), section 32.
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frequencies less than _ is, of course, a stepped, discontinuous
function of frequency, to which this three-termed formula yields
a continuous approximation.

The derivative with respect to frequency of the continuous
function is a measure of the average rate of increase with fre-
uency of the number of modes, and is called the modal density
in frequency)

dN/d  2V/2 2c3 sec. (III.7.5)

The reciprocal of the modal density is a measure of the average
frequency interval between modes, although it is not precisely
the average of the intervals.

The lattice points representing modes in frequency space
are subject to another interpretation. In the section on
standing waves, we saw that sound fields of precisely the form
of E_. III.7.2 could be constructed by adding a number (2, 4,
or 8) of plane waves of equal amplitude; the two descriptions,
by travelling waves and by modes, are completely equivalent.
Those plane-wave components have k-vectors given by the various
combinations of sign in the expression

± 1 ± k2e_2 ± 3

where the ej are unit vectors along the three edges of the
room. The--directions of the k-vectors are the directions of
propagation of the component waves; all can be constructed from
any one vector by multiple reflections in the coordinate axes
and planes (i.e., by sign changes of the parts).

Consider one component wave of the travelling wave descrip-
tion of a particular natural mode, choosing that component with
the k-vector

3

a M = _ (mJ_/LJ)aj ,
j=l

where all coefficients are positive. When the method of con-
structing the lattice of modes in frequency space is reviewed,
it is readily seen that c_M is identical with a vector in fre-
quency space extending from the origin to the lattice point for
the M-th mode. In other words, except for the scale factor c
(sound speed), the plot of modal points in frequency space is
identical with the end-points of the _-vectors of the travelling
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waves by which the modes can be described. The complete set of
k-vectors for the travelling waves is generated by duplicating
the frequency-space lattice_ Fig. III._ in the other seven
octants.

Such a plot of the allowable k-vectors for sound in the
room is called a plot of the modes--in k-space. (In the present
case_ of sound waves_ the plots in k-space and in frequency
space are indistinguishable except for a uniform scale change_
that will not be the situation when the wave speed is a function
of frequency_ as in dispersive media.) The plot of natural modes
in _-space is an extremely important conceptual tool in the
present method of analysis. It contains the essential modal
information_ not only on natural frequencies (implicitly_ in
proportion to distance from the origin) but also on the spatial
variations of pressure (the magnitude and direction of the
k-vectors_ and the magnitude of the trace wavenumbers which are
t--hegeometric projections of the _-vector on various axes).

The significance of the correction terms in the expression
for modal density can now be clarified. The term involving the
room area S was found by counting those modes on the flat sur-
faces of the octant in frequency space. The _-vectors of these
modes lie parallel to one of the walls of the room_ the modes
are two-dimensional standing waves. The correction term involv-
ing the room perimeter P was found by counting those modes on
the edges of frequency space. Their k-vectors are parallel to
one of the axes of the room_ the modes are one-dimensional
standing waves. It is evident from Eq. 111.7.4 that the pro-
portion of I- and 2- dimensional modes in the total number
becomes increasingly smaller as frequency increases. Thus_ the
important conclusion: except at low frequencies_ the typical
mode is a three-dimensional standing wave.

Distribution in Angle: We have_ then, identified the direc-
tion in k-space from the origin to a modal lattice point as the
direction of propagation of energy in the sound field of that
mode. Let us consider how these modal directions are distributed.
Suppose all the modes having natural frequencies in the range

- I/2A_ _ _ _ _ + I/2A_ were excited at the same time. We
ask how ma_y motes would be detected by a directional microphone
which responds only to energy travelling in a narrow beam of
solid angles.
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Denote by _ the unit vector in the direction the micro-
phone points_ l_t A_ represent the solid angle (ster-radians)
within which the microphone is sensitive. Finally, write the
number of modes detected in the form

n'A_A_ .

We are interested in the dependence of n' upon frequency_ _,
and direction, _o The calculation is readily carried out in
k-space, in much the same manner as the modal density in fre-
quency was calculated.

The lattice points in k-space are uniformly distributed
at the centers of volume elements having volumes _3/V where

V = LIL2L 3 is the room volume. On the other hand_ the total
volume in k-space corresponding to ranges A_ and A_ at a
radial distance k = e/c, is

k2anak= ( 2/c3)a A .

We equate this volume to the product of the number of detectable
modes and the volume per modal point, and get an approximate
value for n':

n,(_,a ) = _2V/_303 (III.7.6)

The conclusion to be drawn is that n'_ the "density" of
modes in frequency and in solid angle_ is independent of the
direction for which it is evaluated. Of course_ one must
recognize that the number of modes detected for any particular
values of the four parameters (_,A_,_j and A_) will fluctuate
with changes in any one of them. However the density n' is
an average value, which becomes more accurate as the number of
modes detected is increased.

Note the simple relation between the two different density
functions_ Eqs. III.7.5 and III.7.6:

n' (_,_) = (2/_)n(_) .

The difference is related to the different concepts that are
involved. The density n(_) counts each mode (i.e. standing
wave) as a single unit. The density n'(_,_) counts each travel-
ling wave as a single unit. A typical mode is made up of eight
travelling waves. The travelling waves corresponding to all
modes are distributed uniformly in all directions_ i.e. in %_
ster-radians_ thus is explained the factor 2/_ = 8/%_.
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Energetics of Sound in Rooms: The usual measuring instru-
ment for determining the "strength" of sound indicates the time-
average of the square of sound pressure, or the square root of
that quantity: the rms (root mean square) pressure. The pres-
sure is of particular interest to us as the exciting force for
structural vibration. Here we consider relations between the
sound pressure and the energy of the sound field in a room.
Particularly, we relate the space-time average of squared-pressure
to the space-time average of energy density_ that is, the time
average of total energy divided by the room volume.

The analysis to follow refers to the modal pressure dis-
tributions found in the particular case of a rectangular room.
But it should be noted that those particulars are not at all
essential to the derivation of the average relations which are
based solely on general modal concepts and the general relation
between acoustic potential energy density and the square of
sound pressure.

The pressure response in a single mode of a rectangular
room can be written (Eqs. III.7.1 and 111.7.2)

pM(_,t ) = PM_M(_) cos _m t (III.7.7a)

with

_M =_M c°s klXl cos k2x 2 cos k3x 3 . (III.7.7b)

The factor_ is an arbitrary normalizing factor whose value
we choose to Natmsfy the condition that the average value of

_ shall be unity:

<_ r = V dXldX2dx 3 = i . (III.7.7c)

Since the allowable values of k_ for natural modes are restricted

by the condition k_L_ = m_v wit_ m. an integer, the room contains
integral numbers of Malf-_eriods o_ the periodic functions
cos koX-. It follows that the average value of cos2koX, over the

rangeJO3to Lj is 1/2; the norml_lizing factor is thus 3f_und to be

eM = , only one k = 0 . (III.7.7d)

, two k_ = 0
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The average in both space and time of the square of pressure is
now readily calculated:

2 12

<PM>_,t = _PM "

Now_ the instantaneous potential energy density is every-
where proportional to square of pressure (Eq. III.5.2)] there-
fore_ the space-time averages are also proportional:

2 (III.7 8a)<uM>_,t = (l/2PoC2)<pM>:,t •

The kinetic energy could be evaluated from its definition_ once
the particle velocity is foundj but that analysis would be an
inelegant substitute for well-known physical principles. In a
physical system resonating naturally without external forces_
the time averages of total kinetic and potential energies are
equal (cf. Hamilton's Principle)] the total energy is constant
in time. The corresponding relations for the energy density
functions and their space and time averages are:

<UM>_, t = <TM>z_ t

<EM> _ = <EM>_, t : <UM+TM>_, t = 2<UM>_, t

The space average energy at every time_is therefore simply
related to the space-time average of p_:

2 2 (IZI.7 8b)<EM>r_= <PM>r__t/_oc .

These relations have pertained to a single mode. Suppose
the pressure in the room is due to many modes. It is a well
known mathematical principle that the solutions for different
natural modes are spatially orthogonal_ that is_

<_M_N>r = 0 _ M_N .

It follows that the average squared-pressure is a sum of modal
contributions without cross-products:

2
<(ZpM)2>r = Z<pM>r ,
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and that the modal energies are also simply additive. In other
words_ the relations in Eqs. 111.7.8 between average energy
densities and average squared-pressure are equally as valid for
a sum of modes as for a single one. Moreover_ as was noted in
the introduction, the relations are valid for a room of any shape.

Mean Free Path: The general sound field in a room can be
expressed as a superpositlon of responses in the various natural
modes. We have seen in the case of the rectangular room how each
mode_ and therefore the general sound field, is also strictly
describable as a superposition of travelling plane waves.

For later purposes_ we wish to evaluate the time-rate at
which sound energy is incident upon the room walls. In a real
room3 the walls are not perfectly rigid and they do not perfectly
reflect the incident sound_ a small fraction of the incident
energy is absorbed instead of reflected. The amplitude of sound
left to its own devices will gradually decay. If the rate of
decay is small, when compared with the period of oscillations3
the modal description of the sound field developed for the room
without energy losses can be retained as a good approximation
to the spatial distribution of sound pressure and energy. The
gradual decay is incorporated as a gradual change in the modal
amplitude_ i.e. in the modal energy. The decay rate is evaluated
by equating the rate of change of modal energy to the power dis-
sipated by absorption. (This sort of approach to the slightly
dissipative resonance is common to all fields of physics: elec-
tronics_ mechanics_ etc.) The sound absorptive properties of
walls are generally characterized by "energy absorption coeffi-
cients", i.e. the fraction of the energy of an incident wave
which is absorbed. Hence_ our present interest in the rate of
incidence of energy -- the incident Dower.

Suppose that all the modes of a rectangular room having
natural frequencies in some relatively broad band are equally
excited. The sound field in the room is described as a super-
position of travelling plane waves (defined for all space)_ each
having the same intensity but travelling in different directions.
Consider one wave_ travelling in a direction _ whose energy
density is E and intensity is l=cE3 (Eq. 111.5.5)3 where c is the
energy speed which equals the sound speed. Then the sound power
incident upon the wall surfaces is just the product
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where P(_) is the "projected area" of the room, i.e. the area
of its optical shadow for light travelling in the direction _.
(See Fig. 111.5 which illustrates the more general case of a-
non-rectangular room with re-entrant surfaces_ then, some parts
of the optical shadow must be counted twice.)

This power pertains to a single direction of travel. We
shall average it with respect to direction on the assumption
that the incident intensity I is the same for all directions.
A sound field satisfying this assumption is known as a diffuse
field; sound fields in large, irregular rooms are found experi-
mentally to be nearly diffuse. As we saw in connection with
Eq. 111.7.6, the directions associated with the component plane
waves of modes in a frequency band A_ are uniformly distributed
in angle. Therefore the assumption that I is independent of
direction corresponds to an assumption that all the wave compo-
nents in some frequency band A_ are excited to equal amplitudes.
We desire the average value

: .

and must therefore average the projected area. This averaging
is most easily performed first for a small element of the wall,
later integrating over all wall elements.

Consider an element of wall area dS in Fig. III.5. We
describe directions of incidence by the local spherical angle
coordinates, 8 and @, arranged so that 8=0 is the outward normal
to dS, pointing aw___ from the room. The differential of solid
angle is

d_ = sin8 d_ d8

and the total solid angle for all directions is

da = %_ .

The projected area for given directions is dSlcosSl, so that
the average for all directions is

dSloos01sinedCd0= dS/4
¢=0 @-0
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The integral over _ extends only from 0 to _/2_ because_ by
definition_ P(_) includes only those surfaces for which energy
is incident upon the wall from inside the room. Putting these
formulas together_ we find that the average sound power incident
on the walls is

f dS = IS/4 (III 7 9a)<II_= I<P> = I -_-- . .

where S is the total wall area of the room.

The total sound energy in the room is also proportional to I.
For each angle of incidence_ the energy in the room is

VE(_) = VI/c = <VE(a)> , (III.7.9b)

where V is room volume and E is the energy density of the wave.
The result is a constant for all directions_ and is therefore
the same in the average.

The ratio of power incident upon walls to the total energy
in the room assumes a very simple form:

v - <Z> cS
- <vE>- • (III.7.10)

This formula affords a simple way of calculating the power inci-
dent upon the walls from the energy_ or from the space-time mean
square pressure using Eq. III.7.8b. It is a fundamental formula
of room acoustics. Constant use in experimental problems has
validated its pertinence to practical noise fields_ even though
the diffuse field assumption on which it is based appears at
first to be a gross idealization,

This ratio v is called the mean collision rate_ a name
which unfortunately refers to a quite different method of calcu-
lating the same number. The length defined by

d c/V:  V/S (III.7,11)

is called the mean free path. These apparently irrelevant names
arose naturally in the solution of the following problem. Con-
sider a pellet moving at speed c along straight paths within the
confines of the room. Upon collision with a wall_ the pellet
takes a new straight path in some other direction. Assume that

the totality of paths are so distributed that the density (paths
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per unit area) of paths perpendicular to any plane is a constant,
both as to position on the plane and as to orientation of the
plane. Subject to that assumption, d is the average length of
all the paths and v is the average time-rate of collisions of
the pellet with walls. The essential identity of the mathematics
of the two problems is readily seen.

Interestingly enough, analysis indicates that a single pellet
in an ideally perfect rectangular room, being reflected by the
walls as is light by a mirror_ will not generally take up the
required distribution of paths no matter ho_ many paths nor even
how many initial directions are included. _Differences up to
18_ in the mean free path have been calculated*.) Of course,
one may well question the pertinence of such pellet paths to the
behavior of sound in real rooms.

One must recognize that the validity of many results of the
present analysis is based on the plane wave description of modes
in a rectangular room, and has not been demonstrated for other
room shapes. We face one of the most difficult questions of
room acoustics: how to make an analytical transition from simple
room shapes to complex ones° The problem is largely unresolved.
Fortunately some progress has been made. By exact analyses of
unduly simplified rooms_ by unduly simplified theories for real
rooms_ and by comparisons of theory and experiment_ those situa-
tions which are susceptible to cautious predictions from various
simple formulas are fairly well known.

For example_ the description of a sound field by a super-
position of orthogonal natural modes has wide validity. There-
fore the relations between space-time averages of energy densities
and of squared-pressure (Eqs. 111.7.8) hold for the general shape.
Moreover_ it can be shown that the cumulative distribution and
density of the natural frequencies for a room of any shape are
correctly given by Eqs. 111.7.4 and III.7.5_ in the limit of high
frequencies. (Only the first term, involving room volume_ is
important in the limit.)

In other respects, the present results for rectangular rooms
cannot be generalized. However, we shall see that the hypothesis
of uniformly distributed intensity flux (diffuse field) leads to
experimentally validated results if the room is sufficiently
irregular and non-ideal.

*F. V. Hunt_ J. Acoust. Soc. Am. 3_66,556-564 (1964).
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111.8 Generation of Plane and Spherical Sound Waves

In this section we shall study some simple examples of sound
sources which generate elementary wave types. We shall find that
certain features of the methods we use and results obtained will
carry over into our subsequent discussions on structural vibra-
tion and sound radiation.*

Sound Radiated by an Infinite Rigid Plane

Consider a large rigid plate that oscillates with a periodic
velocity v(t) in the direction of its normal. Let x be the co-
ordinate normal to the plane. Then_ the symmetry of the problem
suggests that a plane wave is generated and propagates away in
the direction. Therefore_ the pressure in this wave must
have the form

p(x_t) = F(x-ct)

and_ from Eq. III.3.2b_ the particle velocity in the direction
is

u(x t)= c
where the functional form of F is still to be determined.

At the plate_ x = o_ we impose the boundary condition that
the velocity of plate motion equal the particle velocity. This
is equivalent to requiring that the fluid stay in contact with
the plate. (This doesn't always happen_ in liquids_ the fluid
sometimes breaks away from the vibrator giving rise to the phe-
nomenon of cavitation.) Thus_ the function F must satisfy

v(t) = u(O_t) = F(-ct)/PoC = P(O_t)/PoC •

The pressure at x = 0 produces a reaction force per unit area
on the plate. On an area A__ the ratio of force F to velocity v
of the plate is called the _adiation imDedance_

F PAD (III.S.1)
Zra d = _ = --_--= PoCAp .

*These and many other examples are discussed in L. L Beranek_
Acoustics (McGraw-Hill Book Company_ New York_ 1954i Chapters 2_
4_ and 5.
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(Compare the use of impedance for a simple resonator in
Chapter II, Section o.) The power input to the plate required
to generate this motion is

_rad = <Fv>t = <v2>tPoCAp = <p2>tAp/PoC = <v2>t Rrad (111.8.2)

where Rra d = Re(Zra d) This formula closely approximates the
sound power radiated by a finite flat plate of area A when its
dimensions are several acoustic wavelengths in extent_ _ This

power will also form a basis for comparison of other radiators;
the ratio of the power radiated to that for a large flat plate
of equal area is called the radiation efficiency and is denoted

by _rad"

There are two significant features of Zra d for the infinite
flat plate. The first is that it is a real number, which means
that for sinusoidal excitation, the force and velocity are in
phase with each other. The second is that its magnitude is
independent of frequency. Neither of these is true for the
spherical source to be discussed next.

Sound Radiated by a Spherical Source

Next we consider the sound field generated by the uniformly
pulsating small spherical source. The symmetry of the problem
suggests that we employ spherical coordinates. Therefore, we
must write the wave equation (Eq. 111.2.6) in terms of spherical
coordinates (r,e,¢), which means we require the Laplacian
operator V 2 in these coordinates:*

V2p _ I _ r2 _p i _ ___)_p2 ( + (sins
r r2sin e _@

l _2p
+ 2

r sin2e 8¢2

Since there is no polar or azimuthal dependence in our source,
we shall assume there is none in p_ and drop deri_tives in 8/8e
and 8/8@. We also introduce the variable g = rp. Doing this_
one finds

_2 _ 1 _2a = 0 (III.8.3)
_r2 c2 _t2

_F. B. Hildebrand, Advanced Calculus for Applications (Prentice
Hall Inc., Englewood Hills, New Jersey, 19_2)_ p. 305.
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with a general solution

g = rp=  (r-ct)+ K(r+ct) (III.S• )

where H and K are arbitrary functions. The first term is a wave
propagating in the +r direction (outgoing) and the second repre-
sents a wave travelling in the -r direction (incoming)• (Compare
section 3, above.)

The wave generated by our pulsating sphere will be outgoing_
if there are no other sources or reflectors, this is the only
wave. The pressure therefore is

p(r_t) = ! H(r-ct)r •

In particular_ if the time dependence is sinusoidal_ then the
pressure wave may be represented in complex notation by

p(r_t) = _ ei(_t-kr) (III 8 5)
r @ • •

The velocity is found as before by using the force equation
III.4.2, and the gradient operator in spherical polar coordi-
nates.* Neglecting e and @ dependence as before,

Do
grad p = _r _-_ = - i_Po_

where e. is a unit vector in the direction of the radius vector.
Unlike--±'the velocity in the plane wave which is everywhere par-
allel, the velocity in this wave is everywhere directed radially
outward. Combining these equations, one finds

u = -_C (I - _r ) . (III.8.6)
Po

This is the same as the plane wave relation when kr>>l, but
differs when kr is small.

_F. B. Hildebrand, Advanced Calculus for Applications (Prentice
Hall Inc., Englewood Hills_ New Jersey, 1962)_ p. 305.
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At the surface of the source (r=a) u = v and F = p(a)As_
where F is the reaction force of the medium on the source and

A s = 4_a 2 is the source area. The radiation impedance, defined
as the ratio of force to velocity on the surface_ is

P (a)As #=a2 pc (I ,!) -IZrad- v = c -
(III.8.7)

(ka)2+i(ka)
= _a2po c

l+(ka)2

Note that the impedance is complex and varies with frequency.

The real part Rra d can be expressed as the product of a radia-
tion efficiency-Efid the radiation resistance for a plane wave:

Rra d = (pc c As)_ra d ,

whence we find

= _(k a)2 (III.8.8)
rad l+(ka) 2 "

The radiation efficiency for the spherical source is plotted
logarithmically in Fig. 111.6.

The nature of Zra d can perhaps be clarified by reference
to Fig. 111.7. Here we show a mass-dashpot system excited by a
velocity v s . Since the ideal dashpot has no mass_ there is no
dlfference-in the magnitude of the force F at its ends, so that

F = R(Vs-V)= M dvdt '

or,

IR F = v s - I/FM dt .

If we differentiate this, we get

dv
F + _ d__F_F= M ____s

R dt dt "

104





vt  Ass,,

F q DASHPOT, R

vs t DRIVING POINT

Figure Iii.7.- Mechanical equivalent of the radiation impedance for a simple

source (pulsating sphere). (The mass equals three times the mass of fluid

displaced by the sphere.)
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If the velocity source is harmonic with frequency _, we can
write this equation in complex notation:

F (l+i_ _) = i_Mvs .

The ratio of force to velocity ( input impedance for the
mechanical system) is found to be

F i_M/RZ=--=R
v s l+i_M/R "

If we let R = p_cA_ and _M/R = ka, we get an expression identical
with Eq. III.8._] _ig. III.8 is, then, the mechanical equivalent
circuit for the radiation impedance. Thus_ the effective mech-

anical resistance is the high frequency limit PoCAs and the
effective mass is M = __aA_. The acoustic medium presents a
resistive (dissipativejUan_ mass load to the pulsation of the
sphere, with the mass load becoming less significant as the wave-
length gets near or smaller than the radius of the source.

Radiated Power

The radiation resistance can be used to compute the radiated
power (compare Eq. II.6.8):

= Gra d . (III.8.9)

We can also compute the radiated power by considering the sound
field at some large distance from the source. No energy is
dissipated in sound propagationj at least in the idealized case
we consider. Therefore the power leaving the source should also
pass through every larger surface enclosing the source. In par-
ticular, let_us consider a very large spherical surface of radius r
and area %_r 2. If r is large enough, the sound field there is,
locally, approximately a plane wave] the intensity (power per unit
area) can be found from the plane wave relationship, Eq. III.8.2.
The intensity is the same everywhere on the sphere, since the
sound field is spherically symmetric. Thus, we compute

=red = _vr21p(r) 12/2 Po c • (III.8.10)

using z/21pl2 = <IRe(p)]2>t in translating Eq. III.8.2.  rom
Eq. III.8.5_ we find

r p(r) = a p(a)
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Figure 111.8.- Power balance and energy diagram for reverberant rooms.
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from Eq. IIIo8.7_ we can express p(a) in terms of the velocity
of the source_ v. A little calculation confirms that the expres-
sion computed for power is the same as Eq. 111.8.9.

111.9 Room Acoustics (Part II)

In the previous discussion of room acoustics_ nothing was
said of sound generation or dissipation° We considered only
the ideal case_ studying the undamped_ natural response. Here
we consider the practical case_ introducing both a source and
some sinks for the sound energy. In doing so, we use the approx-
imate theory of room acoustics which is based on simple consider-
ations of energy and intensity.*

Simple (Spherical) Sound Source in Room

We consider a small (ka<<l) spherical source which emits
sound in a room. If the source is a velocity source (by which
we mean that its surface normal velocity is prescribed indepen-
dently of the loading pressure)_ then there is a fairly direct
way of proceeding with the analysis. This is by finding the
normal modes of the acoustic space with all its boundary condi-
tions_ including a boundary condition of vanishing normal velocity
on the surface of the spherical source° The pressure field is
then expanded in the eigenfunctions of the room and the response
is computed. When the excitation is a band of noise instead of
a pure tone_ then the response must be integrated over the exci-
tation spectrum and averaged in time.

The process just described is a very complicated one and_
in fact, is unsolvable by purely analytical methods unless the
geometry and the boundary conditions are highly idealized. An
alternate approach_ that of so-called ray or geometrical acous-
tics_ has been developed which will predict many of the important
features of the sound field in the situation described above.

It has been so successful_ as judged from its support by experi-
mental analysis_ that most calculations of sound in closed spaces
are carried out in this way. The approach also has another impor-
tance for us: in many ways_ it foreshadows the methods we shall
apply to structures.

*The approximate theory and its use are explained in greater
detail in L. L. Beranek_ Acoustics (McGraw-Hill Book Company,
New York_ 1954) Chapter I0.
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We assume that the source emits a spherical sound wave
which progresses outward from the source until it encounters a
wall. This is the so-called direct field of the source and the
mean square pressure in it is related to the acoustic power of

the source _Is by Eq. 111.8.10:

2 Poc ]Is
<Pd>t (IZl.9i)

_r 2 '

where the subscript d stands for "direct field". (Note that we
are back in real notation. Throughout this section, p stands
for the real, physical pressure.)

Upon encountering a wall_ the direct sound is partly ab-
sorbed and partly reflected. For some experimental or special
purposes, one may attempt to have most of the energy absorbed
at the first encounter with the wall. Such rooms are "anechoic",
and may be used to simulate an outdoor situation. Other rooms
are designed to have very hard, non-absorptive walls_ they are
called "reverberation chambers" In these, the sound reverberates
for a relatively long time and the sound pressure from the reflec-
tions at the walls will be larger than the direct field from the
source. The rooms one normally encounters in homes, offices,
and schools are fairly reverberant.

The reflected sound will have a distribution of directions
depending on the details of the scattering surfaces. One assumes
that this distribution is diffuse, that is_ completely uniform in
angle. One also assumes that the resulting acoustic energy den-
sity ER is uniformly distributed over the interior of the room.
(The subscript R stands for reverberant._ Calculations based on
these assumptions give surprisingly good answers for many rooms
of practical interest.

Our description of the total sound field is now as follows.
The source injects energy into the direct field] the energy
travels to the room walls where a fraction of it is absorbed and
the rest is reflected. The reflected energy makes up what is
called the reverberant fleld_ which is_ we assume_ a diffuse
sound field with waves travelling in all directions. The rever-
berant field also loses energy at the room walls_ a fraction of
the incident power is absorbed.
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This situation is very easily described analytically.
First we define an energy absorption coefficient for the walls
as the ratio of absorbed power to incident power:

: ]la /_i (III 9 2)bsorbed ncident " " "

We assume that the same coefficient applies to both the direct
field and the reverberant field] _ represents an average coeffi-

cient for all the walls. The power _Z s is absorbed from the
direct field_ and the rest (I-_)Z s is fed into the reverberant
field to generate the energy density E R and the total energy VE_.
(V is room volume.) The reverberant power incident on the wall_
can be computed from the mean collision rate v (Eq. III.7.1)] a
fraction _ of it is dissipated at the walls. The rate at which
the reverberant energy changes is given by the power-balance
equation

_t(VER) : (l-_)I[ s - _v(VE R) . (IZI.9.3)

This power balance is indicated schematically in Fig. III.8.

In the steady state_ the energy is constant_ so that (with
Eq. III.7.1) the reverberant energy density is

ER = vV _ = c R (III.9._)

where R - S_/(I-_) is called the room constant. (S is the total
wall area of the room.) The energy density is proportional to
the space-time mean-square pressure_ as we found in Eq. III.7.8b)]
we have assumed it to be constant. The total pressure is the sum
of direct and reverberant components] simple calculations lead to:

2> 2<P2>t: <Pdt + <PR>t

o 2

The pressures in the direct field and the reverberant field
are equal at a distance

r = (R/16v) I/2 (III.9.6)

ill



from the source. This distance is small compared with the
overall dimensions of the room, if the absorption coefficient
is small and the room is therefore reverberant. Some rough
calculations will illustrate this. If _ is small, R _ S_.
In typical rectangular rooms, the surface area is about

s 6 v2/3 : 6L2m

where L _ V I/3 is a characteristic room dimension. (Compare L
with the mean free path_ Eq. III.7.11.) In a typical_ moderately
reverberant room that has no special absorptive treatment, _=i/6.
Then the distance for equality of direct and reverberant fields
is r _ L/7] the direct field predominates at points closer to
the source.

Reverberation and Decay

When the sound source has been t_Tned off, there is no longer
any direct field] the energy of the reverberant field decays slowly
because of absorption at the walls. This situation is described

by the power-balance equation, III.9.3, with _ = 0. The solution
is an exponential decay of energy density,

= e , (111.9.7)
ER ER t=o

with a decay rate _v nepers per unit time.

This equation is formally identical with that governing the
natural decay of the energy of a damped simple resonator,
Eq. 11.4.6. (The different use there of the symbol _ is unlikely
to lead to confusion.) As in the earlier case (Eq. II.%.8c), a

common measure of the decay rate is the _everberation time TR, in
which interval the energy decays to I/I0 u of its origin-_ val_e
(i.e. a change of 60 dB):

TR : iB.8/ v . (111.9.8)

Modal Description for Room with Absorption

In this subsection, we sketch the manner in which the

natural decay of sound in a practical room, with absorption,
can be described in terms of the response of many natural
modes for the room.*

*Detailed discussions are given by P. M. Morse and R. H. Bolt,
"Sound in Rooms," Reviews of Mod. Phys., 16, 2 (19%4) and by
P. M. Morse, Vibration and Sound, (McGraw_-HHill Book Company,
New York, 194_), Chapter _.
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The procedure is as follows. The sound pressure in the
room is expressed as a superposition of components which are
natural modes of the room without absorption. The effects of
small absorption are introduced, ad hoc, by the inclusion of
small dissipative terms. An expression for the space-average
of sound energy density is derived from the modal components
of pressure. The result is compared with that derived from the
approximate theory.

The total sound pressure p(_t) can be expressed as a
series in the natural modes

p(_,t) = ZNPN(_,t) = ZNPN(t) _N(_) , (111.9.9)

where the natural mode functions satisfy Eq. lll.7.1b:

v2 + = o .
2

We choose scale factors so that the spatial average of _N
is unity:

2

different modes are spatially orthogonal in the sense that

<_M_N_r = 0 , M _ N .

(Compare Eq. III.7.7c and following discussion.)

When Eq. 111.9.9 is substituted into the wave equation,

111.2.6, and the differential equation for _N is used, one
finds

ZN_N(_) [m_ PN(t) + d2PN/dt 2) = 0 .

If this series is multiplied by any particular _M(r) and
averaged over position, only a single term is le_tT

d2PM 2 (ZII.9I0)+_M PM = 0
dt2



This is the differential equation for natural vibration of an
undamped simple resonator with natural frequency eM (see
Chapter II, Section 4). In the real room, energy will be
absorbed at the walls and the natural motion will be damped.
We assume, for small damping, that the effect of absorption is
adequately reflected by the ad hoc introduction of a dissipative
term in each differential equation:

d2PM dPM 2 (III.9.11)+ eMnM + PH= o
dt2

and by the neglect of dissipative coupling between modes.

Determination of the modal loss factor qM from the physical
properties of absorptive materials in the room can be a very
complicated affair. In essence, DM can be determined from the
fraction of total modal energy tha_ is dissipative in each cycle
of vibration (cf. Eq. 11.4.7).

However, it is the form of Eq. 111.9.11, rather than the
values of the parameters, that interests us at this point.
This is the differential equation for natural vibration of a

damped simple resonator with natural frequency _M and loss
factor _M" The response of each mode is equivalent to the
response of a separate, damped simple resonator. (This
equivalence is valid also for steady-state, forced response of
the room] compare Chapter II, section 6.)

Let us look at the energy of the sound vibration. The
total energy of sound is the sum of the energies of the different
modes, each of which behaves as a simple, damped resonator. We
use short-time averaging to eliminate fluctuations with the

natural frequency _ while revealing the gradual decay (compare
Eq. 11.4.6). We write the modal energy as the product of room
volume V and the spatial average of energy density EM. Thus,
the decay of modal energy is described by the equatiUn

-_MqMt (III.9.12)
V<EM>_, t = [V<EM>r,t]t=o e

Now, it is found as both an experimental and a theoretical
fact that all the modes resonant at about the same frequency
have about the same value of loss factor and decay rate. The
theoretical explanation is based on a result found above in
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section 7. The typical mode is an oblique one_ with a _-vector
which is not parallel to any walls_ therefore each mode tends
to "sample" and average the absorption on all the walls. If we

assume that this is true_ and set _Mq M = 9 for all modes_ then
the total energy density must decay a_cording to the same law:

= [<E>_t]t=o e-_t . (III.9.13)

This result is in the same form as Eq. III.9.7_ derived
from the approximate theory. The equivalence of the average boun-
dary absorption coefficient _ and average modal loss factor q
is found by equating the decay rates:

_v = _ . (lll.9.1_a)

This can be rewritten in terms of the mean free path d = c/V

(Eq.Ill.7.11):

= kd_ _ where k : _/c . (IiI.9.1_b)

The result is a useful estimation formula_ since d equals a

"typical" dimension of the room.
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IV. WAVES IN STRUCTURES

IV.I Wave Types in Structures

As we have seen, the forms of vibration in rooms are very
complicated, due to the very many degrees of freedom (normal
modes) which may be excited and the complicated pressure pattern
of each. In addition, the boundary conditions are complicated
by the geometrical irregularity of the bounding surfaces and the
lack of understanding of the exact pressure-velocity relations
which must be satisfied at the boundaries. Nevertheless, the
acoustic field is relatively simple in comparison with the multi-
modal vibrational patterns possible on plates and beams.

In detail, any structure is a three-dimensional elastic
(or viscoelastic) medium capable of supporting the fundamental
shear and compressional wave types. Analyses of plates and
beams indicate however, that when the wavelengths are long
compared to the cross-dimensions of the beam or plate, then
the motions may be analyzed into longitudinal (compressional)
and transverse [bending) wave types. In this section, we shall
only consider bending or flexural motions. This is because the
transverse motions of structures will normally couple more
strongly to the sound field and because there are many more
flexural modes in structures at the lower frequencies than
there are longitudinal ones.

IV.2 Equations of Motion for Bending Waves

In this section we shall derive equations of bending motion
for waves in a thin rod (beam). The equations will not be derived
for a plate, but will be stated as an analogy to the one-dimensional
case. Consider an element of the beam as shown in Fig. IV.I. The
intersections of the neutral axis of the beam with the two imaginary
faces of the element are at A and B. Upon motion of the beam these
points move to C and D respectively. The angle between the hori-
zontal and the neutral axis at C is ex and at D it is e . The_+_x .
beam element will be bent as shown in the figure if ex _s greater
than e . The fiber at a distance z from the neutral axis will. x+Ax
unaergo an elongation

8e
= - z ax , (Iv.2.l)

where A_ is the change in length and Ax is the original length
of the element.

116



Fx +ax

yx axis yx+ Ax

A B

---A x---"

Figure IV.I- Dynamics of beam element.
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The fiber is assumed to have an area dS so that the element
of force required for its stretching is

a_ z bedf = Yo a-_dS = - Yo _ as . (Iv.2.2)

If the sign convention for moments is as indicated on the
figurej then the moment applied to the left-hand face is

Mx = df = - Yo _-x z2dS (IV.2.3)

where the integration has taken over the surface S. For small
deflections e _ _ and defining the radius of gyration, _ by

fzK 2
= _s 2dS, we can write the moment as

M = - Y S m2 _2ff (IV.2.%)
x o _x2 "

If we neglect the effects of rotatory inertia a shear
force will be established at the faces of the element which

will counter-balance the applied moment to theelement. The

net clock-wise moment is bM Ax. The shear force is therefore,

_M S _2 _3y (IV.2.5)
F = Z_ = - Yo _x3

and the net vertical force on the element is

_F s K2 _ ax (zv.2.6)
_-_Ax cos O _ Yo

where we have assumed that cos 8 is essentially unity.

If there is an applied vertical force of strength f._ per
unit length then the total vertical force is the sum of f_
and the elastic forces computed above. This force must equal
the mass of the element times the vertical acceleration

2

_t-_2. Combining these_ the equation of motion for the beam
element is
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S f (x t) (ZV 2 7)

where Pm is the density of the beam material. The analogous
equation for two dimensions is derived in Love [Mathematical
Theory of Elasticity, Dover Publications_ Inc., New York 1944,
p. 488] and is

_2 + Yph _2 V2V2y f(_,t) (IV 2 8)Pmh _t2 " .

where Y_ = Yo/(l-_ 2) and _ is Poisson's ratio. The plate thick-
mess is_h.

Like the acoustic case, the damping in structural elements
arises from a combination of sources. Empirical evidence
suggests that the greatest amount of damping in built-up struc-
tures occurs at the structural joints and connections between
the elements rather than in the inherent damping associated
with material hysteresis and/or plastic deformationo In some
cases the acoustic radiation damping of a structure may become
important in its damping also.

The detailed inclusion of the damping phenomena in the
equations of motion is not possible or practical on two counts.
The first is the largely unknown mature of the damping at struc-
tural joints. The second is the very complicated fashion in which
the damping would enter the equations. We shall instead borrow
the procedure we followed in the acoustic case and assume a
mathematically convenient form of damping which will subsequently
be related to experimental measurements of modal bandwidths and
reverberation time.

Damping is usually introduced in the equations of motion
in one of two fashions. In the first it is added as a simple
viscous resistance term

+ + f (zv 2 9)
_t2 " .

where c_ = Y_/Pm is the square of the velocity of longitudinal
waves in the_plate and h is the structural loss factor. Alter-
natively, if one assumes a time dependence ei_t then the damping

be incorporated as a complex Young's modulus Yp(l-ih) tomay
give
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_2y
+  2c (l+i )v4y_ f (Iv.2lO)

_t 2 Pmh • .

As we shall see these are essentially equivalent in most calcu-
lations.

IV.3 Solutions of the Bending Equation

The general two-dimensional solution of Eq. IV.2.8 has not
been achieved. Nevertheless, a substantial amount of informa-

tion concerning bending waves can be gained by solving for th_ t
one-dimensional solutions assuming harmonic time dependence e .
Without damping and external forces then Eq. IV.2.8 assumes the
form

d 2 (Iv.3.1)_2c_2 -- Y _ _ Y = 0
dx_

Since this is a simple linear differential equatiO_xWith constant
coefficients, we assume a solution of the form y_e" . This gives
a solution for _:

_ = 2
K202 _ _ = ! kb , ! ikb (IV.3.2)

where kb = (m/_c2)1/2.

The general solution to Eq. IV.3.1 is therefore

[ -ikbX ikbX -kbX kbX] i_ty = ae + be + ce + de e (IV.3.3)

where a, b, c, and d are coefficients to be evaluated depending
on the boundary conditions. As we discussed in the previous
chapter, the first two terms in the solution represent traveling
waves in the +x and -x directions respectively. The last two
terms represent "near-fleld" terms which can exist near the
boundaries of the plate (or near the source). The solutions
Eq. IV.3.3 are also applicable to a bea_,_f we interpret the
longitudinal wave speed c_ to be (yoPm) ±/_, the values appro-
priate to the beam. The longitudinal speed in plates and beams
of the same material and thickness will only differ by 5_. We
shall not consistently make the distinction in the discussion
to follow.
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Let us first consider the solution for an infinite beam.
In this case c and d must vanish if the solutions are to remain

finite. The wave in the +x direchion therefore propagates with
a phase speed cb = _/k b = (m_c_) I/2. Unlike the acoustic wave
the bendingwave has a phase speed which increases as the
square root of the frequency. It is this frequency dependence
of speed_ a so-called dispersion effect_ which is central to many
of the interesting properties of beams and plates both in regard
to their structural behavior and to their coupling to a sound
field. This simple dispersion law is valid until the bending
wavelength becomes approximately six times the plate thickness h.
For shorter wavelengths or higher frequencies a more complete
analysis is required such as that developed by Mindlin
[R. Do Mindlin_ J. Appl. Mech._ Vol. 18_ p. 36_ March 1951].
In this chapter_ however_ we shall assume that the simple bending
equations are adequate to describe the transverse flexural move-
ment of structures.

IV.%. Energy Transport in Flexural Wave Motion

We consider a simple propagating wave in the +x direction
y = Ae-ikbXo The velocity associated with this displacement
wave is v + i_Ae -ikbx. The time average kinetic energy at any
position is I/4PmSIv] 2. In a propagating wave the average
kinetic energy is everywhere the same. The total average energy
that is twice this since the kinetic and potential energies are
equal on the average. The total energy is

= I 2 i 2
E _ PmS[V] = _ PmSm2]A[ . (IV.4.1)

The transverse shear force associated with the wave is

F - - YoS_ 2 d3v = - ik3YoS_2Ae -ikbxd-G
and the time average force velocity product at any point isj
therefore_

I I_ 3y 2
<Re(F)Re(v)> t _ Re(Fv*) = SK2_[A] (111.4-3)= _Kb o " "
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This is the rate at which work is done by one part of the
beam or the other due to the passage of the wave through the
shear forces. There is another part of work done by the moment
forces acting through the angular velocity ___ _y . The rate at
which work is done by the moment is 0t 6x
therefore

_e By Re(Y S_2 d2_> t = <Re(F)Re(v)> t
<Re(M)Re(_-_)> t = <Re(i_ _-_) . o dx---T¢

The rates of work done by the moment and by the shear force are
therefore equal and the total transport of energy across any
position is Just

YoS 2 IA12k.

The energy velocity is defined as the ratio of the power
to the energy density

I

cE X/E = = 2% .

We note here another difference from the acoustic case. The
wave dispersion has caused the energy and the wave fronts to
travel at different speeds. It is interesting to note that the
group velocity* for the dispersive wave is

= 1/dk 2cb (IV.4 7)Cg "de =

and is also equal to twice the phase speed. It makes sense
that the group velocity and the energy velocity should be the
same since the group velocity is the speed with which the
envelope of a wave packet will propagate along the beam. The
packet of waves contains a clump of energy which is being

propagated along at the speed Cg.

*For example J. J. Stoker_ Water Waves (Interscience Publishers_
Inc., New York, 1957) p. 51.
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IV.5 Modes of Vibration in One and Two-Dimensional Structures

In much of the study of the interaction of sound with a
structure_ it is convenient to consider the structure as a
collection of natural modes of vibration. As we shall see_ the
number of cases for which these modes are known exactly are
very few. It is possible to generate some useful conclusions
about their behavior by the consideration of a few simple cases
which can be solved. The simplest of these is a beam which is
supported at both of its ends.

We wish to find the equations for mode shape and frequency
of natural vibration of the beam shown in Fig. IV.2. In the
absence of damping and external forces_ the equation of motion
for the beam is given in Eq. IV.3.1 and the general form of its
motion is given in Eq. IV.3.3. By proper combination of the
exponents we can rewrite Eq. IV.3.3 in the general form.

y = A sin kbX + B cos kbX + C sinh kbX cosh kbX

(Iv.5.1)
where A_ B_ C_ and D are coefficients related to a_ b_ c, and d.
It will turn out that Eq. IV.5.1 is a more convenient form of
the response to use than Eq. IV.3.3 when we are dealing with
standing waves.

We assume an ideal simple support at the ends x = 0_ and
x = _. Such a support applies only a transverse force at the
ends so that there is no resulting transverse displacement or
moment applied. The boundary conditions at x = 0 and x =
are accordingly

d2Y = (IV.5 2)y = 0_ 2
dx

The requirement that y vanish at x = 0 requires that B = 0.
The requirement that the second derivative should vanish with
the origin means that B - D = 0. These two conditions taken
together require that B and D must vanish individually. Elim-
inating the circular and hyperbolic cosine functions and requir-
ing that y vanish at x = _ gives

A sin + C sinh = 0 (IV.5.3)
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Figure IV.2.- Configuration of supported beam.
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while requiring that the second derivative vanish there results
in

- A sin kb_ + C sinh kb_ = 0 . (IV.5.4)

The two conditions Eq. IV.5.3 and Eq. IV.5.4 require that

both A sin k _ and C sinh kb_ should vanish. Since the hyper-b
bolic sine only vanishes at the origin, this means that C = 0.
The conditions are also satisfied by A = 0, but that is a trivial
situation not involving motion of the beam. One can only have

non-trivial solutionsj therefore, if sin kb_ = 0 or if kb_ = my.
The eigenfunctions for the simply supported beam are therefore,

_m = 21/2 sin m_x/_ , (IV. 5.5)

normalized as in the acoustic case such that <_> = i.

The natural frequencies of vibration are found from the
general relationship Eq. IV.3.2 so that

m22_m = k _c_ = _2 _c_ . (IV.5.6)

Note that as a result of the dispersive nature of the beam, the
natural frequencies proceed as the square of the integers rather
than the integers themselves as is the case for sound waves.
This has an important effect on the distribution of energy in
frequency for one-dimensional structures.

Modal Density

The values of kb which correspond to the natural modes may
be displayed on a linear plot as shown in Fig. IV.3. The number
of modes below any value k is given by

N(k) = k/} = . (IV.5.7)

In the average number of modes per interval N(k) is therefore

n(k) dN(k) _ (IV 5 8)= dk = _ " " "
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Figure IV.3.-Modal pattern in "k-space" for supported beam.
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The modal density in frequency is found by the simple transfor-
mation

dk _ (IV.5°9)= n(k) •
g

Up to this point our result is completely general. If one
places the value of group velocity found in Eq. IV._.7 into
IV.5.9 one has the result

n(_) = _ (IV. 5.I0)

2_W _Kc_

which decreases as _I/2. At this point it is clear that the
geometry and dynamics of a mechanical system will have a very

great effect on its modal density. 2For the room we found that
the density of modes increased as _ resulting in a very great
density of modes in the audio frequency range for rooms of
typical size. Eventually_ at higher frequencies where finite
thickness effects become important_ the beam will also have an
increasing modal density. However_ in the lower frequency
region where bending wave equation describes its dynamics_ its
modal density is relatively low and decreases with increasing
frequency.

Beam Clamped at Both Ends

A beam which has both of its ends held in place by vise-
like clamps is shown in Fig. IV._. In this case both trans-
verse forces and moments are applied to the ends of the beam
so that the displacement and the slope both vanish there. The
boundary conditions for the clamped-clamped beam are

y = 0j dxdV= 0 @ x = 0_ . (IV.5.11)

As before, three of the constants and the allowed values of
wave number are determined by these four boundary conditions.
The fourth constant is determined by the normalization. We
shall not go through the derivation for this case since the
results are more complicated and involved considerably more
algebra than before_ because the hyperbolic functions are not
eliminated. The details of the derivation are carried out by
Morse* and here we merely state the result for the allowed
wave numbers. The equation for the wave numbers is
• P. M. Morse_ Vibration and Sound_ 2rid Ed., (McGraw-Hill Book
Company_ Inc._ New York_ 19%_-_p. 156f.
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Figure IV.4.- Configuration of clamped-clamped beam.
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cos kb_ = I/cosh kb_ . (IV. 5.12)

The two sides of this equation are plotted in Fig. IV.5. The
intersections of the two curves represent solutions for the
allowed values of k_. As we see, they are k_ = 0 and
k_ _ (m+I/2)_. These values of k_ are plotted on Fig. IV.6.
Note that at higher wave numbers the spacing of modes is the
same as in Fig. IV.3. Thus, although the values of resonance
wave numbers are different_ the modal density for the clamped
and the supported beams become equal above the first few modes
of vibration. The resonance at k = 0 is one of uniform motion,
but the resulting amplitude for a clamped-clamped beam is zero°

The free-free beam, for which there is no moment or shear
force applied to either end, has a frequency equation identical
to that of Eq. IV.5.12. The modal shape functions are different,
but the allowed frequencies of vibration are the same as for the

clamped beam. In this case the value of the wave number kb = 0
corresponds to rigid body translation of the beam.

Vibration of a Simply Supported Rectangular Plate

Consider the rectangular plate of dimensions _-, _2 shown
in Fig. IV.7. We assume that the plate has simply ½upported
edges llke those shown in Fig. IV.2. The general boundary
conditions for a plate are more complex than for the one-
dimensional beam which we have derived. The general boundary
conditions, which are given in Love_* reduce to the simple one-
dimensional condition when applied to a plate with a rectangular
edge. Therefore, for the simply supported case the boundary
conditions are

y = 0, _2y2 = 0 _ @ xI = 0,_
oxI

y = O, _2

_x22 0 _ @ x2 0,_

*A. E. H. Love, Mathematical Theory of Elasticity (Dover Publica-
tions, Inc., New York, 1944) p. #8_.
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Figure IV.5.- Evaluation of resonance wavenumbers for clamped beam.
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Figure IV.6.- Modal pattern in "k-space" for clamped beam.
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Figure IV.7.- Geometry of simply supported rectangular plate.
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The solution of Eq. IV.2.9 for harmonic time dependence and no
damping or excitation is known to be

y _ sin klX I sin k2x 2 _ (IV.5.1_)

the product of simply supported beam modes. The reader will
note that we have not derived a solution of Eq. IV.2.9 in the
sense that we derived the solution for the one-dimensional beam.
We have merely stated that the solution Eq. IV.5.1_ satisfies
the boundary condition and_ if substituted into the equation of
motion_ will yield a consistency relation for the wave number

2 2 = k2 m2_ 2 2 2
kl + k2 p = 2 + m _2 " (IV.5.15)

£I _2

By contrast_ one can meet all the boundary conditions for a
plate with fully clamped edges by forming a product of the
natural mode functions for the one-dimensional beam. In this
case_ however_ the product function does not satisfy the equa-
tion of motion Eq. IV.2.9. In fact_ it is generally true that
there exists no separable solution_ nor any solutions in terms
of simple functions_ for the two-dimensional bending equation.
A great deal of effort has gone into the generation of efficient
and appropriate approximation schemes for determining the eigen-
functions of two-dimensional plate structures.

We can develop a fair amount of information about struc-
tures from the simply supported rectangular plate just as we
could derive information about the general properties of three-
dimensional acoustic spaces in Chapter llI by considering the
simple rectangular parallel piped room. In Fig. IV.8 we have
drawn the modal lattice derived from Eq. IV.5.15. As we dis-
cussed in Chapter III_ the distance from the origin to a lattice

intersection Dolnt is the wave number kp and depends on the fre-
quency through the usual relationship. The resonant frequency
corresponding to the modes is

(m_2_ n_2_)
_m = _c_ k2 = _2 Kc + (Iv.516)p _ • .
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Modal Density

The modal density for a plate is found by considering the
area included by the quarte_ circle of radius k_ shown in
Fig. IV.8o This area is _k_/_. The area whichPmay be assigned

to each mode is _2/_i_ 2. T_e number of modes included up to a
wave number kp is_ t_erefore_

k2 1;2 (IV.5.17)N(k)=

and the modal density in k is

k_l$ 2
n(k) = 2_ " (IV.5.18)

Using n(_) = n(k)/Cg_ one has for the modal density in frequency

k_l_ 2 A

n(_) = 4_Cb 4_c_ (m.5.19)

where we have used A = _._ and k = _/c b. The remarkable thing
about Eq. IV.5.19 is that tie modal density is frequency inde-
pendent. Although we have derived this for a simply supported
plate_ analogy with the previous situations we have studied sug-
gests that it is a general result that the modes for real systems
will occur somewhat irregularly but will have a uniform modal
density on the average.

IV.6 Energy Reverberation in Two-Dimensional Structures

In this section we parallel some of the discussions of the
reverberation of energy in rooms at frequencies well above the
first mode so that many wave fronts and modes participate in the
motion. To do this we study the concepts of mean-free path_
modal energy_ and energy dissipation as they apply to two-
dimensional structures.

Mean-Free Path for Two-Dimensional Structures

The average rate at which the energy of panel motion will
encounter the panel boundaries can be computed by a process
similar to that used for the reverberation of the sound in rooms
in section 111.7. Consider for example an irregularly shaped
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panel like that shown in Fig. IV.9. A certain fraction of the
energy will travel in a direction indicated by the arrows in the
figure. Let this direction be defined by the angle it makes with
the normal to a small element of the perimeter d$. The rate of
energy incident on the edge_ Z, for waves in this direction
depends on the intensity I and the projected perimeter A(e) indi-
cated in Fig. IV.9

d_(e) = dIA(e) . (IV. 6. l)

For one-dimensional waves the intensity and energy are related by
the energy velocity as shown in Eq. IV.%.6. The energy density
of the wave is, therefore

dE = dZ/cE . (Iv.6.2)

If the incident intensity is uniformly distributed in direc-
tion, one has dl = Id8/2_. The average collision rate v was
defined previously as the ratio of power incident on the boun-
dary to the energy contained in the panel]

0 0

(_v.6.?)
/AoI

= z<A(o)>_/-_s "

The average value of the projected perimeter A_s found by
integrating the projected lengths of the elements d_|cose| through
which the energy "leaves" the structure. Averaging this over the
directions corresponding to the energy exit, we have

2--'_" d;Ic°s 81d8 = -- d_ (IV 6 4)
-_/2

Integrating this average projected element length over the entire
perimeter gives

f l L (IV 6 5)<_(e)>e = _ d_ = _l . .
L
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Figure IV.9.- Mean free path computation for two-dimensional structures.
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CEL
= • (IV.6.6)

P

If, as in the acoustic case we define the mean-free path d as
the ratio of the energy velocity to the collision rate v, we
have

d : _Ap/L . (IV.6.7)

This is a general result for two-dimensional systems.

Energy Absorption in Reverberant Panels

The absorption of energy in mechanical structures is fre-
quently described by the loss factor _. In built-up structures
the losses that a panel experiences are usually associated with
its boundaries, either because the energy is propagated through
the boundary to other parts of the structure or because dissi-
pation processes take place there due to interfaces between the
panel and its supporting frames. It has, therefore, become con-
venient to think of the edges as possessing a certain absorption
coefficient 7 which is similar to the acoustic absorption coeffi-
cient for walls described in Chapter III. The relation between
absorption coefficient and loss factor is a useful one for rela-
ting experimental decay curves to absorption mechanisms at the
boundaries.

The discussion proceeds in a manner entirely analogous to
that in Chapter III. If the input power to a point source of

mechanical excitation is _ then the power entering the rever-
berant field is Z s (1-7). This power enters the reverberant
field after one collision with the boundaries as shown in

Fig. IVoI0. From our previous discussion the average rate of
energy encounter with the boundaries is ERADV where ER is the
average energy density of the reverberant fieldo If a fraction
T is lost upon each encounter then the energy balance equation is

_s(1-T) = ERApV7 (IV.6.8)

resulting in an equilibrium energy in the reverberant field
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Figure IV.IO.- Direct and reverberant field inputs from a point source.
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The loss factor is defined by

 diss = (IV.6.I0)

which requires _ = vT. Recalling that the energy velocity is
twice the phase speed,

1 d (IV 6 ll)m = _ kbn • • "

We note that even if the absorption coefficient is unity one can
have resonant modes corresponding to q << I if the mode order is

high_ i.e., kbd >> I.

Panel Enerzy and Kinetic Velocity

The kinetic energy of any small element of the panel is

given by

I dS<v2>tdT = _ _m _ (IV.6.12)

where v is the real transverse velocity of the element. The

total kinetic energy is obtained by integrating this over the
panel area

I Ap<V2>t,x= Pm " (IV.6.1B)

For each mode of vibration_ the average kinetic energy is equal

to the potential energy and, therefore, the total energy is just

twice the average kinetic energy <E> = 2<T>/A o. The mean-square
transverse velocity averaged over space and tmme is_ therefore_

<v2>t_x 2 (_v.6 14)= <E>Ap/Mp _ v k

where M is the total mass of the panel. The quantity v k we
term th_ kinetic velocity and it is defined by the total energy
of the structure and the mass of the panel. For reverberant
vibrational fields on beams and uniform panels_ the kinetic

velocity is identically equal to the transverse velocity aver-
aged over the panel. In many situations, howeverj the kinetic
velocity will not correspond to any easily measured velocity_
but it may still be convenient to represent the energies stored
in the panel by a velocity variable rather than the energy.
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IV.7 The Input Impedance of Infinite and Finite Plates

There are many experimental situations where one would like
to know the local response of the panel to an applied point force.
The ratio of the local velocity response to the force is the input
point admittance. The real part of this complex ratio is the
input conductance and it determines the power flow into the panel
from the point force. The magnitude of the admittance determines
the local rms velocity. In this section we describe the manner
in which this quality is calculated for infinite and finite struc-
tures. Although infinite structures are never realized, structures
are effectively infinite if the reflections from the boundaries are
diminished in amplitude so that they are imperceptible when they
return to the point of excitation. Since perfect absorption at
the boundary and absence of reverberation corresponds to 7 of the
order of unity_ from Eq. IV.6.11 we see that this corresponds to

kbdq_l The resonant character of the panel will be evident when
kbd_l]

Response of Infinite Plate to a Point Force

We consider an infinite plate of thickness h excited by a

harmonic time force of amplitude fn as shown in Fig. IV.II. The
equation of motion with damping is-given in Eq. IV.2.8 assuming
harmonic time dependence]

_ = 5( )l mh[ 2cv4  2(l-in)]Y So

where the 8 function, described in Chapter II, defines the
spatial distribution of the point load.

The solution is obtained by expanding the displacement y and
the force f in the two-dimensional infinite Fourier transform.
The transform convention is defined by

1 y dx e-ik'xY(k) =-- ----y(_) (IV.7 2)
4_2 --

and the inverse transform is accordingly

y(x) --y dk_ eik---'X--y(k) . (IV.7.3)
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Substituting the transforms of y and f in Eq. IV.7.1, we get
the transform relation

fo/Pmh_2c 2

Since the integrand depends only on the magnitude of k, we
express Eq. IV.7.2 in terms of polar coordinates:

f_ t_

O o

Equation IV.7.5 gives us the general response at all posi-
tions on the plate, To compute the input admittance we are only
concerned about the response at the point of excitation r = 0.

In addition we make the substitution _ = k2, _b = k_ and obtain

2v

y(O) I fo f d¢ yd{[_ 2 _(l-q)]-I (IV.7.6)
=24v2 22Pmh_ c# o o

The integral over ¢ may be carried out immediately and gives 2v.
Since the integral in _ is even, we integrate from - _ -9 +
to give

= fo /' d_ (IV 7.7)

y(0) 8vPmhK2c_ u__ _2 2 " °-_b(l-ih)

The poles of the integrand in Eq. IV.7.7 and the path of inte-
gration are shown in Fig. IV.12. Closing the contour as shown,
the integral has the value -iv/_. The ratio of velocity to
force at the driving point is acSordingly the input admittance:

i_y(O) l (IV. 7.8)
G = fo = 8Pmh_C _ "
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Figure IV.12.- Location of poles and integration path in _ integration.
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It is a very interesting result that the input admittance
for a thin plate is purely real without frequency dependence°
The frequency range for which this is true is_ of course, re-
stricted to frequencies for which the simple bending equation
is valid.

Input Admittance of a Finite Plate for a Point Transverse Force

In this section we consider the local response to a point
transverse force for a finite rectangular simply supported plate.
The differential equation governing the motion is still given by
Eq. IV.7.1 except that the source is now assumed to be located

at an arbitrary position x s. We expand the displacement and the
excitation in the eigenfu_ctions 9m which were determined pre-
viously.

4\

Y ' = <Y M>x
(Iv.7.9)

P = _M_M ' _M = <P_M)x

If the applied pressure p is a pure tone force given by

foei_ts(_-_s)_ using the complex convention, then

f
0

=  M(Xs) • (Iv.7.10)
P

The equation governing the response amplitude YM is

[-_ + _2(I-i_)]_ = 'M/proh , (IV.7.11)

and the general velocity response at x is_ therefore,--S

i_y(Xs) = 2mhAp M 2 2 2 " (IV.7.12)-_+i_

The ratio of velocity to force is a highly fluctuating
function of frequency with real and imaginary components. The
real part must_ of course_ be positive but the imaginary part
will have positive and negative fluctuations depending on the
relative value of the frequency _ and the resonance frequency
_M- Noting that the function has strong resonances at _ approx-

imately at _ we can approximate the admittance by
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f _
V Xs' 1 2 1
fo PmhAp _ 9M(Xs)i_ 2_M[_-m_+i_Mn/2]M

I
9M2(Xs) (IV 7 13)

t",J

2 mhAp ""

_=G+IB .

The real part of Eq. IV.7.13 is called the mechanical con-
ductance and the imaginary part is the susceptance. Both are
fluctuating functions of frequency caused by a series of modal
resonances. If we average these functions over a band of fre-
quencies, and over locations of the excitation, we get expres-
sions corresponding to the average real and reactive power input
to the structure for a noise source operating over that band.
The average value of the conductance is

-- I___ /__.<9 >Xs _ 2 {_O-_M_2+ 2G = 2MD M _/_M n

The integral in Eq. IV.7.14 has a large value when _ is in-
cluded in the band and a very small value when it is not. The

average number of contributions is nsA where ms is the average
modal density computed above. When aM is in t_e interval, the
value of the integral is approximately _. The average conduc-
tance is, therefore_

n

-- m s (IV. 7 15)G-2M _
P

2
since the mean value of @M is unity by its normalization.

Note that the average value of the susceptance function
will vanish since it is odd in _-_ and the modal density is
constant. Thus, the average admittance over the band equals
the average conductance given by Eq. IV.7.15. If we substitute
in the expressions, the modal density found for the simply sup-
ported plate_ the average conductance is
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_ 1 = a (iv.7.16)
Pmh_ c _

which is the same value as computed for the infinite plate and
given in Eqo IV. 7.8.

We thus have the remarkable and general result that the
average value of input conductance over a band of frequencies is
given by the input conductance of a similar structure, but infi-
nitely extended. This result is useful because it is frequently
much simplier to compute the input admittance for infinite systems
than it is for finite ones. If we are, therefore_ content with
average values of input power over a band of frequencies rather
than the detailed variations from one frequency to the next_ we
can get the results desired by a simple calculation.

Energy of a Resonator Attached to a Plate

As an example of how energy can be shared between vibrating
systems we consider the simple linear resonator attached to a
very large thin plate at the point x_ as shown in Fig. IV.13.
The resonator consists of a stiffne_ K, a mass M and a dash-pot R
The upper end of the dash-pot is attached to an inertial frame.
We assume that a diffuse reverberant vibrational field exists on
the plate and produces a transverse velocity v. The velocity at

the attachment point is Vs_ and the velocity of the mass is v_.
If the velocities v, and vM are different, there will be a net
compression of the _pring and a force acting to accelerate the
mass and compress the dash-pot. The equation of motion is

K_( dVMf - Vs-VM)dt = M --_ + RvM . (IV. 7.17)

The velocity v_ is the velocity which would exist on the plate v
in the absence_of the spring_ less the velocity v_=fG caused by
the reaction force,_the force times the admittance of the plate.
We assume in using G that the plate is sufficiently large so that
several modes of the plate are excited within the resonant band-
width of the attached oscillator. The oscillator "takes an

average" over several modes of the plate response when it pushes
on the plate.
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Differentiating Eq. IV.7.17 with respect to time one obtains

d2VM dvM
M - + R- + _vM --Kvs - _(V-Vr) (Iv.7.1S)dt2 dt

Collecting terms, the right-hand side of this expression is

dvM
K(v-vr) -K(v-_f)-iv- k_(Md--_--+ RvM) (IV.7.19)

which upon substituting in Eq. !V.7.18 yields

d2VM dvM

__ + _ (TIO+T]ooup)__ 2dt2 o dt + 4(l+Ocoup_o)V M = _o v , (IV. 7.20)

where Do : R/_oM and _co_ p : _o_M. In this equation the unloaded
response v or equivalen_±y,-the response at a position removed
from the attachment point, acts as a source for the oscillator
velocity vM. If v has a uniform spectrum over a bandwidth A
which encompasses the resonance _o, the mean square response is
given by

_> _ _ <v2> t= o (IV.7.21)
<v t 2 _o+_coup A

If the resonator has no internal damping, then _o->O and
one can rewrite Eq. IV.7.21 to give

M<v2>t MD<v2>t= n A (IV.7.22)
S

where we have used the value of _ given in Eq. IV.7.15. Equa-
tion IV.7.22 is a statement of the equality of the energy of the
resonator to the average energy of the modes in the plates. This
"thermal equilibrium" result is common where undamped structures
or sound fields are in energy contact with other systems having
energy diffused uniformly in their modes of vibration. When a

finite amount of damping is present in the resonator, then qo_0
and one has instead of Eq. IV.7.22
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2 Mp<v2>t q coup___ (IV. 7.23)
q

M<VM> t = ns o+_coup

From Eq. IV.7.23 we note that the internal damping of the
resonator must be comparable to its damping caused by coupling
with the structure in order to effectively reduce its vibration
in this environment. This is an important result in trying to
establish damping limits for structures which are attached to
other structures in a random environment. For example, a truss
in a missile or a space craft may be very difficult to damp if
it is strongly attached to the exterior structure and has a lot
of coupling damping to the skin and frame members. The result
also tells us that for no damping at all the maximum energy of
the attached structures is limited to the average modal energy
of the structure to which it is attached.
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V. COUPLING BETWEEN VIBRATION AND SOUND WAVES

The two chapters immediately preceding have been prin-
cipally concerned with the propagation of oscillatory dis-
turbances in fluids and structures and with the natural reso-
nances of finite regions. Now, we focus on interactions
between structures and fluid: specifically the sound radiated
from a vibrating structure and the vibration generated by in-
cident sound waves. The type of problem we consider involves
a finite structure isolated in a sound-bearing fluid. However,
the modification to a structure in a large but finite room will
also be presented.

The method of analysis for the structure's response to
sound starts by representing the general response as a super-
position of the responses of individual natural modes. In
many cases of practical importance, the response of any one
mode is nearly independent of the response of others; we ideal-
ize the situation by ignoring the small coupling between them.
Then, the motion in each mode is analytically equivalent to
the response of a suitably defined simple resonator; the motion
of the whole structure is equivalent to the response of a set
of resonators. These equivalent situations were studied in
Chapter II.

The central analytical problems are two-fold. First, one
must find the parameters (massj stiffness, resistance) of the
resonator equivalent to a mode. Second, one must find the
driving force which is equivalent to a specified sound field.
The techniques for solving the problems will first be formu-
lated in general terms. We shall be concerned with developing
a language of concepts for describing the interactions of
sound waves and any structure. Specific applications will
follow.

V.I The Equivalent Resonator for a Structural Mode

We consider the vibrations of a finite structure isolated
in a sound-bearing fluid. Vibration in vacuum is a classical
problem, conveniently analyzed in terms of the natural modes of
the structure; only a few complications are added by the pre-
sence of the fluid.* The general vibration can be expressed as
an infinite sum of terms, each of which has a different, char-
acteristic spatial distribution of vibrational amplitude.
Thus, the instantaneous vector velocity of a point, whose rest
position is _, is expressed by the series

*Analysis in terms of natural modes is discussed at length in
most texts on vibration theory. For example, see K. N. Tong,
Mechanical Vibration (John Wiley and Sons, New York, 1960),
Chapter 4.
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_(_,t) = Z Vm(t)_m(_) , (V.I.I)

where each term is a different mode of vibration. The scalar

functions of time vm are the modal velocities. The vector
functions of position __m are modal shape functions.

The natural modes for vibration in a vacuum are character-

ized by the vanishing of cross-product terms (involving VnVm,
with n / m) in the series expansions for both kinetic and poten-
tial energy. Each expansion is expressible as a single series
of terms in l__m|2 if natural mode shapes are used in Eq. V.I.I.

Thus, the instantaneous kinetic energy for the vibration
specified in Eq. V.I.I is

T = _ p(_)v-v dr = Zm _ Vm(t ) 9(_) 2d_ , (V.1.2)
W W

where p is the density and the integrals extend over the whole
volume of the structure, denoted by W.

The shape functions of the natural modes are unique except
for arbitrary, constant scale factors. In this study, we shall
require that each @m be so scaled that the integrals in
Eq. V.I.2 all equal the mass of the structure:

W W

Then, the kinetic energy assumes the simple form

T = Em _ MoV (t) . (V.I.4)

In the absence of internal dissipation of energy, each
natural mode will resonate at its own characteristic or natural

frequency, _m rad/sec. The value of the modal velocity Vm(t),
in both natural and forced vibration, is governed by the same
laws as the velocity of an undamped simple resonator with mass
Mo and modal stiffness

Km = _2m Mo " (V.I.5)
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The presence of internal dissipation adds two features.
The energy of vibration in any one mode will be dissipated, as
in the damped simple resonator. But, in general, each natural
mode will also be coupled by the dissipative forces to every
other mode. This latter complication is analytically undesir-

able, but it can be neglected on the assumption that, for small
damping, the coupling forces due to dissipation are small com-
pared with other forces. We assume, therefore, that damping is
small and coupling negligible, so that the total power dissi-
pated in a general vibration, Eq. V.I.I is expressible as a
series

2 (V.l6)
Z : ZRm, intVm(t)

where the coefficients Rm int are called the modal resistances.

The subscript int indicates that energy dissfpation is internal
to the structure.

The coefficients _o, Rm in_' Km defined by these equations
specify a set of uncoupled slmp_e resonators, one for each
natural mode. Each resonator is equivalent to the corresponding
mode in an energetic sense: the resonator's energy functions
equal the modal contributions to the total energy functions of
the structure, when the velocity of the resonator's mass equals
the modal velocity Vm(t). To complete the modelling of forced
structural vibration by the forced vibration of a set of re-
sonators, it will be necessary to determine the forces on the
resonators which are equivalent to a specified distribution of
external forces on the structure.

Bending vibrations: The most important class of sound-
excited structural vibration involves bending motion of uniform
thin panels, or of uniform beams. In pure bending vibrations,
the kinetic energy is associated solely with the transverse
velocity, i.e. the velocity normal to the surface of the panel.
The transverse velocity is uniform in the thickness direction,
but varies from point to point on the surface. The volume in-
tegral in Eq. V.I.3 can then be expressed as a surface integral

pl _ 12d_-/ 2d -
W S
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where m is the "surface density" (mass per unit area) and S is
the panel's surface. Now, if the panel is uniform so that m
is constant, Eq. V.I.3 becomes very simple. It indicates that
the shape functions shall be so scaled that their average
values are all unity:

2>r 1 2<l ml onS= - dZ= (V 7)
-- S

where A stands for the surface area of the panel.

With this choice of scale factors, the modal velocity

Vm(t ) is seen to be the spatial average velocity (in a root
mean square sense) for _ibration _n one mode:

2(t) : <IVm(t)_m(r)12>rV m

Moreover, in a general vibration involving many natural modes,
the spatial average of total velocity is given by:

<IZ(_,t) 12>r = Z v2(t)m J

by virtue of the vanishing of cross-product terms.

V.2 Equivalent Forces

The equivalent modal force fm(t) must be chosen so that
the instantaneous power delivered to the resonator (rate of
flux of energy) is identical with the modal component of total
power delivered to the structure. In the present case of ex-
citation by sound, the external forces are those due to
acoustic pressures on the surface of the structure. Let that
surface be denoted by S. Then the identity of instantaneous
powers is expressed analytically by

fm(t)Vm(t) : -y P(_,t)Vm(t)_'_m(r_)d_
r on S

where n is the unit normal vector to the surface S, directed
out of--the structure and into the fluid. With the minus sign,
the integrand is the product of pressure by the inward normal
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velocity due to one mode, and thus equals the instantaneous in-
tensity directed into the structure; the integral is the
instantaneous power. When Vm(t ) is cancelled from both sides,
we have the fundamental equation for determining equivalent
forces:

i
h

= -J _'_ dr . (V.2.1)fm p n _m --
S

Consider two structures of the same size and shape exposed
to sound generated by identical sources. The sound pressures
on their surfaces will not be the same unless the structures
are internally identical. If, for example, the two structures
have different amounts of internal damping, the velocities on
their surfaces will differ; there will be a corresponding
difference in the total pressure. It is convenient to separate
out this response-dependent component of pressure and to treat
it separately. Thus, we express the total sound pressure as a
superposition of two parts,

p(_,t) = pb_(_,t ) + Prad(_,t ) , (V.2.2)

of which the first, Pb_, called the "blocked" pressure, is that
which would exist in the absence of structural motion. It
depends only on the sound sources and the shape of the struc-
tural surface S. The second part, Prad, called the "radiation"
pressure, is the change in total pressure due to non-vanishing
motion of the structural surface. It depends only on the re-
sponse velocity _(_,t) and the shape of the surface S, and not
at all upon the nature of the sources that generate the re-
sponse. If in the absence of sound sources, the same velocity
_(_t) could be generated by other means (say, by mechanical
action), the sound pressure Prad would be observed in the fluid.

Corresponding to this decomposition of the total sound
pressure, the equivalent modal forces also split into two parts:

fm = fm, b_ �fm,rad ' (V.2.3)

of which the second, the radiation force, describes the reaction
of the fluid to structural motion. Now, the radiation pressure
Prad at any point depends on the vibrational velocity v at all
points of the surface. If the velocity is expressed as a series
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of modal components (Eq. V.I.I), the radiation pressure will be
a series of terms, each due to a different modal velocity vm.
Correspondingly, the radiation force for any one mode (derived
from Prad by Eq. V.2.1) will be a series and include contribu-
tions from all the modes. In other words, the fluid reaction
tends, in general, to couple together the motion of different
modes.

Fortunately for simplicity in calculation, it has generally
been found possible to neglect the coupling forces due to radi-
ation pressures in analyzing structural vibration caused by
sound in air. Because the density of air is so small compared
with the density of structures, the radiation forces coupling
different modes are small and do not affect the motion suffi-
ciently to be important in the overall picture. We shall
neglect them in this study. However, one must note that the
situation can be very different for structural vibration in
water. In underwater sound problems, the radiation coupling
forces can be an essential and complicating feature of struc-
tural vibration.

The first term of Eq. V. 2.3, the blocked force for the
mt-_hmode, is that to which we shall give most attention in the
rest of this study. For, if only the equivalent forces be
known, we can proceed to find the response of the equivalent
resonators by the procedures developed in Chapter II. The
blocked force is derived from the blocked pressure by an in-
tegral in the form of Eq. V.2.1. Like the blocked pressure,
it depends on characteristics of the sound source and of the
surface shape of the structure. In addition, because the mode
shape function appears in the integral, the blocked force
depends on mode shape. Indeed, it is a measure of the close-
ness of match between the distribution of blocked pressure and
the mode shape function.* The ratio of modal blocked force to
a reference sound pressure plays a role similar to that of the

transfer functions Hm which were introduced in Chapter II,
Section 8.

*An analytical expression of this statement is proved by
Schwarz' s inequality:

on
where A is the surface area. Equality obtains when the ratio

of blocked pressure to n._ m is constant.
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V. 3 Coupling Parameter

Let us consider in more detail the nature of the blocked
force for a single mode and its dependence on the sound field.
We first consider excitation by a pure-tone plane wave of sound.
It will be found that the blocked force depends on frequency,
the magnitude of pressure, and the direction of incidence of
the wave. The analysis for more complicated situations, in-
volving many directions or many frequencies, can be built up
from solutions for the simple case.

For convenient analysis of pure-tone variables we use com-
plex notation. The complex pressure of the pure-tone plane
wave which is incident on the structure is

ei_t -ik.r (V.3.1)
Pinc(r't) = Po e -- -- ; k = k_ ; k = Ikl ;

where _ is the frequency, k the wave number, and _ is a unit
vector in the direction of--propagation. This is t--hesound
pressure that would be observed in the absence of the structure,
or at points far from it. The presence of the structure

changes the pressure field, by the mechanisms of reflection,
diffraction, and scattering. The changes occur even if the
structure is motionless; i.e. "blocked". A simple example is
the doubling of pressure amplitude that arises from the reflec-

tion of a plane wave from a large plane surface (Chapter Ill,
Section 6). However, the blocked pressure is proportional to
the amplitude of incident pressure, Po, and so also is the
blocked force. In complex notation, we have

Pb_ (r,t) = Pb_ (r)ei_t _ P ei_tO

b_e i_t _ p ei_tfm, b_ (t) = Fm, o "

We define a coupling parameter to express the proportion-
ality between blocked force and incident sound pressure:

_fPb (_r)r bjeom m, = p [n'_m(r ) ]dr . (V. 3.2)
S o
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This coupling parameter is a complex number, and varies with
both frequency and angle of incidence _. Being a ratio of force
to pressure, it has the dimensions of _rea. However, in other
respects, the coupling parameter is essentially identical with
the frequency-dependent transfer functions Hk(_) which were in-
troduced in Chapter II, Section 8: The incident sound pressure

Po is an exciting "force" which is common to all modes; the
forces on the masses of the various modal resonators, F_ _,

are all proportional to Po, but the constants of proportlo_ality
vary with frequency and differ between modes.

A simple example of the coupling parameter is afforded by
the case of a small rigid piston moving in the surface of a
large plane wall. The blocked sound pressure is twice the in-
cident sound pressure, because of the reflected wave. Every
point of a rigid piston moves with the same velocity; therefore,
the mode shape function _ is constant. It follows from the
agreed normalization, Eq_ V.I.3, that n-_ = I. Thus, the inte-
grant in Eq. V.3.2 equals 2, and the ma--g_itude of the coupling
parameter equals twice the area of the piston, independent of
both frequency and direction of incidence.

V.4 Radiation Loads

We have observed that the radiation component of sound

pressure, Prad in Eq. V.2.2, depends upon the response velocity
of the structure and not upon the source of excitation. Again,
we consider pure-tone response in a single mode. In complex
notation, the response velocity is

i_t
_(_,t) = Vme _m(_) . (V.4.1)

The radiation pressure is the reaction of the fluid to this

vibration and will be proportional to Vm:

Prad(_,t ) = Prad(_)e i_t _ Vmeimt . (V.4.2)

The radiation force for the tn_h mode is, therefore, also pro-

portional to Vm: .

rad ei_t _ V ei_tfm, rad (t) = Fm, m "
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The constant of proportionality between the radiation force
and the modal velocity is a complex number, whose negative is
called the radiation impedance

_ Prad(r)
Z (_) _ -F rad/Vm = Vm [n-_m(_) ]dr . (V.%. 3)m, rad m, ---- --

S

(The minus sign is required to convert the force Fm of the fluid
on the structure into a force of the structure on the fluid.)

Several examples of the radiation impedance were presented
in the earlier analysis of sound waves (Chapter III, Section 8).
In the case of a large flat piston, the radiation impedance was

found to be real and equal to (po c) times the area of the pis-
ton. In the case of a uniformly pulsating small sphere, the
impedance was found to be complex and equivalent to the mechani-
cal combination of a small mass driven through a dashpot
(Fig.III.7).

Analyses for the radiation impedance presented to vibra-
tions of various surfaces in different modes account for a

large part of the acoustical literature and are too numerous
to be summarized here. However, certain common features
justify engineering approximations that will considerably
simplify our future calculations.

In general, the radiation impedance is complex. The ima-
inary part corresponds to an inertial, mass-like reaction
i.e. like _M, where M has units of mass); however, the equiva-

lent mass attributed to radiation loading is not constant, but
varies slowly with frequency. This "virtual" or "added" mass
is almost always small compared with the mass of the solid
structure; the few known exceptions involve metal shell struc-
tures under water. The main effect of the added mass is to
reduce the frequency of modal resonance from its value for the
structure in vacuo. The reduction is generally small (less
than a few percent) and negligible for structures in air.

The real part of the radiation impedance, called the
radiation resistance, is usually small and often smaller than
the imaginary part. However, it cannot always be neglected.
Whereas the imaginary part of the radiation impedance was small
compared to the corresponding inertial reaction of the struc-
ture, the radiation resistance must be compared with the
structure's inherent resistance. In energetic terms, one must
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compare the energy dissipated in radiation with the energy dis-
sipated internally, for the same amplitude of vibration. In
such a comparison, it is often found that dissipation by radi-
ation predominates, even for structures in air. Since the re-
sponse of a structure to steady excitation builds up until
energy dissipation balances the energy input, it is evident
that the radiation resistance must not be neglected.

What is this energy we speak of as being dissipated in
radiation, and where is it dissipated? When the structure is
vibrating in one mode with velocities given in complex form as
in Eq. V.4.1, the motion is impeded by the radiation pressure
given in Eq. V._.2. According to the theorem for computing a
time-average by means of complex products (Eq. 11.5.5), we have

<Re(Prad)Re(_._)>t = _ Re PradV_ _n'__m "

This is the time average of intensity, i.e. the time average of
the rate of flux of energy through the surface S, per unit area.
The integral of it over the whole surface S equals the time-
averaged power delivered to the fluid from the vibrating struc-
ture. According to the definition of radiation impedance,
Eq. V.4.3, this time-averaged power is

i V 2R
_rad_t = _I ml re,tad (V._.4)

= < [Re(Vmeimt ) ]2)tRm, ra d

where IVml2 = VmV_ ' and Rm, rad = Re(Zm, rad ).

The energy "dissipated in radiation" is not being converted to
heat. It is vibratory energy of the structure which is con-
verted into sound waves and propagates away from the structure
into the fluid. This leakage of energy from the structure can
be as effective a means of diminishing its vibratory energy as
is direct conversion to heat.

160



V.5 Modal Response Equations

In the preceding sections we have formally manipulated the
equations for sound-excited structural vibration into a simple
form similar to that governing the response of a simple resona-
tor. We considered the response to a pure-tone plane wave whose

complex sound pressure amplitude is Po" The response velocity
was described as a superposition of modal responses (Eq. V.I.I).
Each mode behaves as a simple resonator with mass Mo, stiffness
Km, and resistance Rmlin t. The equivalent modal force was
separated into a blocked force proportional to Po (Eq. V. 3.2)
and a radiation reaction proportional to the modal velocity Vm.
Thus, the equation governing the pure-tone response of any
single mode can be written

Fm, b_ = Fm Po = ZmV m (V.5.1)

where

Zm = Zm, rad + Zm, int_

Zm, int = Rm.int + i(_Mo - Km/_)- The term Zmint is the im-
pedance of the simple resonator that represents one natural
mode of the structure in vacuo (Eq. 11.6.3). In deriving
these relations we have explicitly neglected small forces,
arising from internal dissipation and from sound radiation
pressures, that could tend to couple the response of one mode
to the response of others.

Finally, we noted that the radiation impedance Z_ _ is
generally found to be small enough that its imaginary_ar_ can
be neglected, at least for structures in air. The relative
importance of the real part, the radiation resistance Rm, rad,
varies from case to case. As a measure of its importance, we
define a resistance ratio

_m _ Rm, rad/(Rm, rad + Rm, int) ' (V.5.2)

whose value always lies between 0 and i.

The net result is an equation of the same type as that
governing a simple mechanical resonator. However, the total
resistance is the sum of radiation and internal components.



V.6 Directivity: Reciprocity

We have seen that sound energy is radiated from a vibrating
structure, the total power being determined by the radiation re-
sistance. In general, the energy flows out in all directions,
but the sound intensity varies with direction. This selectivity
with respect to direction is called directivity. However, a
vibrating structure is also selective with respect to direction
in another sense. The blocked force generated by an incident
sound wave can vary with the direction of incidence; that is,
the modal coupling parameter Fm is a function of direction.
Thus, the structure exhibits directivity both when it is driven
by sound and when its vibration generated sound. It is an in-
teresting and important consequence of the principle of reci-
procity that these two aspects of directivity are identical.*

Let us consider the two reciprocal situations in more
detail. In the first, we assume that the structure moves with
pure-tone vibration in a single mode. The complex amplitude
of modal velocity is Vm. We determine the directionality of
radiated sound by making pressure measurements at many points,
all at the same large distance Ro from the structure but in
different directions (specified by the unit vector _). The
complex amplitude of measured pressure Prad is proportional to
Vm, but the factor of proportionality varies with direction _.

In the second situation, we evaluate the modal blocked
force which results from a sound source located at these same

points, all at the same large distance Ro from the structure.
No matter what the direction of the source, the incident sound
wave is approximately plane because the distance is large, and
it has the same complex pressure amplitude Po because the dis-
tance is the same in each case. Thus the modal blocked force

is (of.Eq.v.3.2)

= rm o "

*A detailed proof of the relations given in this section is
presented in Section IV of a paper by P. W. Smith, Jr.,
"Response and Radiation of Structural Modes Excited by Sound,"
J. Acoust. Soc. Am. 3__4,640-647 (1962). The proof is based
on the validity of point-to-point reciprocity in the fluid.
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The conclusion drawn from reciprocity is that the variations
with direction _ of P__; (in the first situation) and of F_ _
(in the second)--are i_entical. Analytically, we find that t_e
magnitudes of each are related as follows:

[Prad( l/Vml = (Oo/4 Ro)Irm(% )l . (v.6.l)

Note that the result is not explicitly dependent on the charac-
teristics of the structure or of the mode shape. If any mode
radiates strongly in a given direction, it is also strongly
excited by waves incident from the same direction.

Equation V.6.1 makes it possible to relate the modal
radiation resistance to average characteristics of the coupling
parameter. We observed in Section 4, above, that the energy
dissipated in the radiation resistance is energy that is con-
verted to sound and propagate8 away from the structure. The
dissipated power equals the power carried by the waves with

pressure amplitude Pr d" The radiated sound wave at large dis-
tances from the structure is approximately a plane wave; its
time-averaged intensity (power per unit area) is given by the
plane-wave relationship (Eq. III.5.5b):

<Irad_t = IPradl2/2Po c •

The total radiated power is got by integrating the intensity
over a spherical surface of radius Ro:

< _rad_t = J <Irad> t R_d_ ,
all

where d__ is the differential of solid angle and R_d_ is the
differential of area on the spherical surface.

The previous three equations relate the total radiated
power to an integral of |Em|2. But Eq. V.4.4 expresses the
same power in terms of the radiation resistance. When all are
combined, one obtains*

*In integral notation, the average in angle _is written

<G>all g_ =4---_ G d_ .
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p ck 2

Rm, rad = 12>all _n • (v.6.2)

This important consequence of reciprocity is independent of the
characteristics of the structure or of the mode shape. It in-
dicates that the average (mean-square) coupling parameter for
all directions of incidence cannot be large unless the modal
radiation resistance is large, and vice versa.

Directivity Function: The fluctuations of IFml 2 from its
average value constitute the directivity function for the mode:

Irm(,£)12/<lrml2>all n . (v.6.3)

As a result of the proportionality inherent in the reciprocity
relation, Eq. V.6.1, the direotiviSy function also describes
the fluctuations in angle of |Prad| 2 and of the time-averaged
intensity.

V.7 Response to Noise and Diffuse Sound Fields

The formal development of basic equations is at an end.
These equations (Eq. V.5.1) describe the response of a single
structural mode to a wave of single frequency incident from a
single direction. With certain approximations appropriate to
moderately resonant structures with small fluid loading, we
found the equations to be formally identical to those for a
simple resonator excited through a frequency-dependent coupling.

It is time now to use these results to get prediction
formulas for the more complicated situations of practical in-
terest. Such situations include excitation by noise, with
energy distributed over a frequency band; excitation by waves
incident from many different angles; and response in numerous
modes simultaneously. The procedures for accomplishing this
end were developed in Chapter II.

It is pompous to note that the infinitude of possible
situations must contain exceptions to any simple formulas.
Many of the practical cases of interest are well approximated
by one of several idealizations. As far as frequency content
is concerned, the ideal noise is one having a flat spectrum --
the case treated in Chapter II. In regard to direction of
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wave incidence, the corresponding idealization is a uniform dis-
tribution of sound intensity with respect to direction of
incidence. This ideal case can be described as a uniform-

distribution in angle of sound sources, each of which is un-
correlated with respect to all the others. The resulting sound
is called a diffuse noise field. We noted in Chapter Ill that
the sound in a reverberant room excited by noise is approximately
a diffuse field, except at the walls, of course, where sound is
incident from only one side.

A. Noise response; one mode; one direction

Assume that the incident sound pressure Po(t) is a noise
incident from one direction and has a broad spectral density

Spo(_). As a consequence of the pure-tone relationship between
incident sound pressure and blocked force (Eq. V. 3.2), the
spectral density of blocked force is

where Fm is the modal coupling parameter (compare Eq. 11.8.12).

Now, the spectral density of force will not be flat even
if the spectral density of pressure is perfectly flat; the fre-
quency variations of Fm will modify the spectrum. However, in
the practical cases that have been analyzed, it is found that
the frequency variations of Fm are slow compared with the
variations in the response curve of the mode (the plot of modal
admittance), for moderately resonant modes. In other words,
the bandwidth of Fm is large compared with the bandwidth of the
modal resonance. Therefore the spectral density of force
satisfies the criteria for a broad-spectrum force.

The response of a single resonator to a broad spectrum was
analyzed in Chapter II (Eq. 7.6). The energy of modal response
is

_Em_t = Mo<V_>t = _ Spo(_)IFm(_m'_)12/Rm, tot (V.7.2)

where Vm = Re[Vmexp(i_t)], _m is the natural frequency of the

mode, and the resistance Rm, tot includes both internal and
radiation contributions.
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B. Noise response; one mode; diffuse field

Now, assume that the total incident sound pressure Po(t)
is the result of a diffuse noise field, with waves incident
from all directions. Consider those waves which are incident
in a narrow cone of directions, subtending a solid angle d_

sterradians. Their contribution to the spectral density S_o is

d = ,
Sp o Sp o

since, in a diffuse field, the contribution of each direction
is the same. (All directions from a point constitute a solid
angle of 4_ sterradians.) The corresponding contribution to
the spectral density of force is got from Eq. V.7.1:

dSf,b_ = Spo -- •

The total spectral density of blocked force is the integral
over all directions:

Sf,b_ =f dSf,b_ = Spo<IFm( _)12>all _ . (V.7.3)
all

This analysis is valid at every frequency. It is evident that
the diffuse field problem differs from that for one direction
only by the introduction of the average-in-angle of |F| 2.

The energy of one mode's response to a diffuse noise field
is, therefore,

(_m)< Ipm(mm,_) I2>all _/Rm, tot (V. 7.4)<Era>t = Mo<V_> t = _ Spo

The mean-square coupling parameter can be eliminated in favor of
the radiation resistance, by means of the relation deduced from
reciprocity, Eq. V.6.2. The result is

= Mo< v_> t 2_2 (V.7_ 5)<Era>t 2 = (_m) _m '
PoCk 2 SP o

where k = mm/C and we have introduced the modal resistance ratio

_m (Eq. V.6.2).
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This equation demonstrates an important point. No matter
what the structure, the value of the resistance ratio _m can
only range from zero (when the internal resistance far exceeds
the radiation resistance) to unity (when the internal resistance
is negligible). Therefore, the energy of any mode excited by a
diffuse noise field reaches a finite upper limit as its internal
damping is reduced towards zero. Modes that are more strongly
coupled (larger values ofF m) are also more strongly damped by
radiation, and the two effects counteract each other.

We have noted that a diffuse noise field is generated by
the reverberation of sound in a room. The value of the upper
limit on energy of a structural mode (Eq. V.7.5 with _m = I) can
be shown to equal the average energy of each single acoustical
mode in the room.* Thus, Eq. V. 7.5 can be given this elegant
interpretation: if a dissipationless structure is exposed to
noise in a reverberation room, the modes of both room and
structure have the same energy. This is an example of the
general physical principle called equipartition of energy.

Let us return to consider the nature of the differences
between the result for a single direction of incidence and the
present result for a diffuse field. The difference is solely
a matter of the directivity of the structural mode. The ratio
of the responses to a noise from one direction and to a diffuse
field with the same sound pressure is equal to the directivity
function for that direction (Eq. V.5.3).

C. Multi-modal response to a band of noise; diffuse field

As a final example, consider the response of a multi-modal
structure exposed to a band of noise in a diffuse field, such
as a reverberant room. The calculation scheme was described in
detail in Chapter II, Section 9. Basically, the procedure is
to add the energies of response of all modes whose resonance
frequencies lie in the frequency band of the excitation.

*R. H. Lyon and G. Maidanik, "Power Flow Between Linearly
Coupled Oscillators," J. Acoust. Soc. Am. 3__, 623-639 (1962),
Section VII. The result follows from the expressions for
modal energy and modal density derived in Chapter III.
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We assume that the incident sound pressure Po(t) consti-

tutes a diffuse noise field with a uniform spectral density Spo
limited to a frequency band A_. In a laboratory situation,
there may actually be no noise with other frequencies. In a
field situation, the measurement apparatus must include electri-
cal filters_ one measures the noise components in the filter
bandwidth S_ and predicts the response components in the same
band. The two situations are essentially identical. The mean-
square pressure in the band is:

f •<p >t = d_ = A_ Spo

The total energy of response is, approximately, the sum of
the modal energies of modes with %n in the band. The sum, in
turn, equals the product of the number of modes by the average
energy per mode. The number of modes equals the modal density
n(_) times the bandwidth A_. Analytically, the time-averaged
total energy is

<E> t = Era<Era>t = n(_) A_ <Era>t,m . (V.7.7)

The average energy per mode can be computed by averaging
whichever of the previous equations is appropriate and con-
venient. For example, using Eqs. V.7.4 and V.7.5, one finds
the total response energy in the band to be

<H_t = <po2>t 2 n(¢°)<<IFml2>_JRm, tot>m " (V.7.8)

Further development of the relationship depends on circumstances.
If, for example, internal damping is known to predominate and

the damping of every mode is about the same, then Rm, to t is a
constant. Equation V. 7.8 becomes

<E> t _ n(c°)<IFm 12> n(_0)< IFml 2>_, m _ 2, m

= _ R = _ q_Mo , (V.7.9)
<P o>t

where the last expression introduces the loss factor q.
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Finally, we recall that, for bending vibrations of uniform
plates and beams, the time-averaged energy is simply related to
the space-time averages of velocity and of acceleration

M

Mo<V2>r ' = o <a2>r, (V 7 i0)<E>t = _ t _ _ t " " "

(See Eq. V.I.7 and Eq. II.7.7.)

D. Example

The face of a spring-mounted piston lies flush in the side
of a large box exposed in air to a diffuse, broad-band noise
field (Fig. V.I). We shall compute the response, using cgs
units. The parameters of the piston resonator are:

mass M = 200

face area, A = 30 cm2
resonance frequency, _ = I000 _ rad/sec (500 c/s)
loss factor, q o = 5 x 10-3.

The loss factor has been determined from measurements of the
reverberation time, or of the decay rate of natural vibrations
(Chapter II, Section 4).

First, we must determine the coupling parameter IFl for
different directions of wave incidence. The piston is small
compared with the wavelength (about 70 cm). Therefore, the
pressure is essentially uniform across its face, and the force
on the piston equals its face area times the pressure. The
box is large. Therefore, the piston is shielded from waves
incident from the opposite side; such waves generate little
blocked pressure. On the other hand, waves incident directly
upon the face containing the piston will generate a blocked
pressure equal to twice the incident pressure (the pressure-
doubling effect of reflection from a large wall).* it follows
directly from these considerations (cf. Eq. V.3.2) that

iF I _ _2A, direct incidence on piston} .
O, shielded from piston

*In the sense used in this paragraph, a dimension L is small

if 1/2 kL < I (L K 1/3 wavelength) and large if 1/2 kL _ 2.
See T. Nimura and Y. Watanabe, J. Acoust. Soc Am. 25, 76-80
(1953).
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pressure of wavesdirectly incident
on piston is doubledby reflection
from box

BOX

wavesincident on backside

Figure V.I.- Spring-mounted piston in large box in diffuse sound field.
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But, half of the waves are shielded and half are directly in-
cident_ therefore

2A2 = 1.8 x lOBcm _ •
<IFl2>all

Note the values of the directivity function Eq. V.6.3:

D(_) _ _, direct incidence on piston)-- , shielded from piston

The radiation resistance can now be computed from Eq. V.6.2.

(For air at normal temperature and pressure, Pc c = 42 dyne
sec/cm3_ c = 3.45 x i0- cm/sec; k _ _/c.) The result is

PoCk 2
Rrad = __ <IFI2> = 50 dyne sec/cm •

For comparison with the measured loss _fact°r, we compute the
" ' ° on""raOia_l loss factor, i.e.

-4

qrad _ Rrad/_oM = 0.80 x l0

Evidently, internal damping greatly exceeds damping by sound
radiation_ the resistance ratio (Eq. V.5. 2) is

-2

5 Rrad/Rto t = qrad/_ = 1.60 x lO

The sound pressure is measured, at a point not near the
box but exposed to waves incident from all directions. By
means of electrical filtering, the measurement is restricted to
frequency components in the octave band from 300 to 600 c/s.
The measured sound pressure level* is 130 dB re 2 x 10 -4 dyne/cm_-

•The sound pressure level (in decibels) corresponding to a
pressure P is defined as

lO lOglo(P/Pref)2

where the standard reference pressure is 2 x 10-4 dyne/cm2.
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Thus, the mean-square pressure for the band is

= (2 x lO-4)2 13 _ lO5 /<po>2 x i0 = x dyne2,cm _

The average spectral density in the band is

<po2>/A_--_x lO5/6oo_--2 1 x lO2 dy_e2/cm_
Spo " rad/sec "

The mean-square response velocity can be computed from

Eq. V,7.5 or from Eq. V.7.4 (with Rto t = _C0oM):

J_/2 S o<lrl2>
<v2>t = = 0.95 cm2/sec 2 •

r_C_oM2

The rms values of velocity, displacement, and acceleration are
respectively:

1/s
<v2> - 0.97 cm/sec

<x2> 1/2 <v2> 1/2/,cu= = 3.1 x lO-Scm
O

1/2 1/2
<a2> = _o<V2> = 3.1 x 103 on/see2-

The last is 3.1 times the gravitation acceleration.

If the same sound pressure is generated by a wave incident
from a single direction, the mean-square response is modified
by a factor equal to the directivity function. In the present
case, D(__) = 2 for all angles of direct incidence on the piston.
Thus, for any directly incident wave or any combination of them
having the same sound pressure level, the mean-square response
is twice that calculated for the diffuse field, and the rms re-
sponse is larger by _2.
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VI. RESPONSE OF SUPPORTED PANELS TO A SOUND FIELD

As an application of the procedures and methods of comput-
ing response described in Chapter V_ we shall consider the
modal response of thin_ flat panels to an incident sound field
of broad band noise. Our development will proceed in three
steps: a review of the pertinent response parameters as derived
in Chapter V_ a summary of the vibrational mode behavior of
simply supported panels_ and a calculation of modal radiation
and response behavior. By considering the average behavior of
a group of modes in some frequency band, we are able to predict
the response of a supported panel as a combination of the
responses of all affected modes in that frequency band.

VI.1 Response and Radiation Parameters

In Eq. V. 7.8 the average energy of a group of modes was
presented in terms of the rms pressure_ the modal density_ the
total modal damping, and an average of the squares of the
coupling factor modulus IFI over the angular distribution of
incident acoustic energy. When the sound is completely diffused_
the average over coupling parameters can be related to the modal
radiation resistance according to Eq. V.6.2. If all the sound
is incident on the panel from a particular direction_ then the
average over direction introduces the directivity factor D(_)_
defined by Eq. V.6.3. For these two cases_ therefore_ we can
obtain the important response parameters by considering how the
panel modes radiate sound.

VI.2 Vibratory Modes of a Simply Supported Rectangular Panel

The radiation of sound will be treated below by considering
the coupling factor statistics of simply supported rectangular
panels. A brief review of the form and dynamics of panel modes
is therefore appropriate.

In Fig. IV. 7 we sketched the outline of a simply supported
panel having dimensions $Ix $2" The modal shape functions for
the normal modes are_ by Eq. IV.5.14

m_x I n_x 2
 m(X): 2 sin sin

_I _2

(vi.2.1)
= 2 sin klX 1 sin k2x 2 .
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The wave number components for resonant modes were plotted in
Fig. IV.8_ and the average modal density of the panel was given
in Eq. IV.5.19.

The important dimensions of the panel motion as far as its
radiation behavior are concerned are its overall dimensions $I_

$2' the "trace" wavelength of bending waves _ = 2_/kl, and
_2 = 2_/kp_ and the acoustic wavelength ha. Throughout the
discussio_ in this Chapter_ we shall assume that the acoustic
wavelength is smaller than the panel dimension. References to
more complete discussions will be reviewed in Chapter VII. In
Fig. VI.I we have indicated how the wave number "modal lattice"
may be divided into regions where

(a) the acoustic wave number ka exceeds the bending
wave number kb_ these modes will be termed "surface"
modes.

(b) kb exceeds k_,_ but one or the other trace wave number
is less than ka_ these modes will be termed "edge" modes.

(c) kb exceeds ka, and either trace wave number exceeds
ka as well_ these modes will be termed "corner" modes.

When k a _ kb_ the bending wave speed in the panel exceeds
the sound speed. Modes in category (a) are accordingly termed
AF (acoustically fast)_ while modes in categories (b) and (c)
are termed AS (acoustically slow). In flat plates_ as we saw in
Chapter IV, the bending wave speed varies directly with the wave

number kb, so that only modes that resonate above a certain fre-
quency fc given by

2
f = 1 c (VI.2.2)
c 2_ _c_

will be acoustically fast. As we shall note in Chapter VII, we
can encounter AF modes at lower frequencies than this when the
stiffening effects of curvature are present.

In addition to these considerations_ the radiative properties
of the panel depend on the ratio of acoustic wavelength to panel
size. There is generally a significantly larger radiation of
sound when the panel size exceeds one-third of an acoustic wave-
length. This is the condition we shall assume in all the
discussions of this Chapter.

174



k 2

k

_/_ strip modes
_\'_, corner modes
II111111111surface modes

Figure VI.I.- Regions of modal radiation behavior.
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VI.3 Calculation of Modal Radiation and Directivity

In this section, we shall compute the radiation resistance
and directivity characteristics of the simply supported panel
mounted in a large acoustic baffle of several acoustic wave-
lengths in size. Our procedure is basically that outlined in
Chapter V.

Radiation from surface modes. When the bending wave is
faster than the speed of sound and the panel is several wave-
lengths in size, then a relatively _imple form of sound radi-
ation results. We can evaluate <|F|2>_ in this case by referring
to the wave number diagram in Fig. VI.2. A dSffvse sound field
will produce trace wave numbers on the panel |ks|_ka. The re-
lations between averages in the _s plane and _ are derived in
Appendix I.

The coupling factor is given by

Pb__M(_)d_rrM( )= p-j-
S

_4fe-ikxX - ikyy= sin kM, x x sin kM, yY dxdy

Ap

=-tAp Ixly , (VI.3.1)

where Ap = _1_2 , the panel area.

Thus,

<IrM()12>: 2 l y12>
The functional forms and average values of ]I]2 are described in
some detail in Appendix II. The various conditions listed in
Section VI.2 are distinguished in the analysis by the way they
affect the evaluation of |I| 2.

176



[,,,..
[,,_

f QOIQOQeQOe00 O

• • OOS

/ "'_IIIIIL_II_I"""''" _Q
/ •.__...... ,_.
/ "":'r_'*""" I,-:--, _I _ ,,,,g,t,_i.l,g,X.-.-, I

I -_""_-_ oeo e eooo ooeeo_.e e I



When IkMl = kb(mM)_k _, then referring to Fig. All, I, the
average over _ (which is _n average over k_ according to Appen-
dix I) has a primary maximum at k s = k M. -_sing Eq. AI,4, we
can express Eq. VI.3.2 as

= 1 2 (l_ks2/k_) -i/2
s a

where we have related cos 8 to the acoustic wave number k a and.

its trace on the panel. If we next integrate over the maxlmum

at k s = kM, using Eq. AII. 10, we get

_k a

8_A
- P .2

ka cos @M

Using Eq. V.6.2,* the radiation resistance is just

App°C (Vl. 3.5)
RM, rad- cos @M "

When kM_ 1/2 ka, one can take cos @M-I and the radiation resist-
ance becomes that of a large flat plate (see Eq. 111.8.1) which
moves uniformly normal to its rest position.

The directional characteristics of response and radiation
are found from Fig. VI.2. We note that the maximum of |F|2

occurs when k s = kM, and, since the magnitude of I is not
affected by the sign of kx or k., there will also be maxima at
the reflections of kM shown in _ig. VI.2. The four lobes of
radiation maxima are sketched in Fig. VI.3. Using Eq. V.6.3,
the directivity index for the radiation at the radiation maxima
is

*In studying the flat panel, we have excluded waves from one

side of the panel, a_d the factor (4_) -I in Eq. V.6.2 shouldbe replaced by (2_)
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Figure VI.3.- Directivity pattern for a surface mode.
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2 e_)/s_ (w.3.6)Dma x = (kaA p cos

The radiation resistance VI.3.5 is that of a straight crested
bending wave on an infinite plate, if one considers the power

radiated from an area Ap. The effective radiating area of the
plate therefore is the entire surface_ as indicated by the
cross-hatched region in Fig. VI.4.

Radiation from edge modes. When the bending wavelength
is smaller than the acoustic wavelength, but one trace wave-

length, say Zy, exceeds ha, a different computation from the
above is required. Since we also assume that Za<$ x, then the
average of IFI2 can be written (see Fig VI.5)

<lr_12>_ _6A_<l_xl2 I_yl2 (oo_o)-I= >ks<k a

64 2f a _asin_=--:mAp dkyl_yl2]' dkxl_12(oo_O)-_
_ka o o

(VI.3.7)

With the above conditions on wavelength and geom@try_ II_l 2

is a rapidly fluctuating function o_ avtrage value 2/k_ _
according to Eq. AII.7. Replacing |Ix| _ in the integra_ by its
average value, and writing

2 sin 2 @ k_)i/2 -I (VI 3.8)cos 8 = (ka - k a , •

the integral over k x can be carried out to give _ka/2.

Since Z_>I_, llvl 2 exhibits a strong peak which acts like
a 6-function _ith are_ _/25_ according to Eq. AII.9. The value
of Eq. VI.3.8 is therefore _approximately given by

64 _ 2 _ka2 .<lrMI2>_= A_ _ •
_k[ 2_y k 2 2 "M,x_x

_Y (VI.3.9)= 32_

kak_,x
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Figure VI.4.- Effective radiating area for acoustically fast (surface) mode.
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If we use Eq. V.6.2 again, we get

kaSy
RF 16 2 (vI.3.1o)M_rad = PoCAp •

kM, xAp

For a mode where _x>_a, _y_a' and _a_$y, one has the symmetricsituation

Rx ka_x
M, rad = PoCAp 16 k2 . (VI.3.11)

M,yAp

Another way of computing the radiation resistance is to
note that volume velocity from neighboring phase cells will tend
to cancel everywhere except at the edges_ as shown in Fig. VI.6.
When the breadth Sw is greater than _/3, the uncancelled volume
velocity strips tend to radiate independently, and one computes
the radiation resistance (VI.3.11). When _a>_x, the strips inter-
act. If the mode number M,x is odd, the strips will be in phase
and radiation will be augmented. When M,x is even, the volume
velocity is cancelled and the radiation is diminished. We
should emphasize, however_ that the same directivity and radia-
tion resistance results from either the generalized force calcu-
lation above_ or the combination of edge strip radiators suggested
here. Details of these cancellation and enhancement effects can
be found in the paper by Maidanik.*

Radiation from corner modes. When the trace wavelengths

ZM_x and ZM _, are both smailer than the acoustic wavelength ha,"_ o .

then the approxzmatmon of Eq. AII. 7 is applied to the integrals
over both kx and ky. However, in this case it is simpler not to

convert to an average in _s from _ since the integrand llx|2|ly| 2
is essentially uniform with an average value

l xl21 yl2 4k2 2 A2 • (Vl.3.12)
M, xkM, y p

* G. Maidanik, "Response of Ribbed Panels to Reverberant Acoustic
" J. Acoust Soc. Am., 34 809 (1962).Fields, .
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y axis

Figure VI.6.- Volume velocity cancellation for a y-edge mode.
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T hu s,

<lr12> = Z6A <l]:xl21 _yl2>= k2 k2
M,x M,y

and

k 2

32 a (VI.3.13)RM, rad= PoCAp -@-- 2 2
kM, xkM, yAp

using Eq. V.6.2 again (but averaged over 2_ instead of 4_
steradians).

In Fig. VI.7, we show the wavelength relationships that
have been assumed in this development. Since the acoustic wave-
length is greater than either trace wavelength, there is volume
velocity cancellation everywhere except at the four corners,
shown shaded. These corners act as point sources of sound which
radiate independently as long as _a_3$x or 35v. If one computes
the sound radiation from these four sources r_diating independently
using the uncancelled volume velocity and the radiation resistance
of a small source (similar to Eq. 111.8.8, except that in the
present case the source radiates into 2_ steradians)_ then the
calculated radiation resistance is exactly given by Eq. VI.3.13.

The peaks in directivity are, by Eq. V.6.3_ associated with
values of ks that produce maxima in IF 12j Since there are many
such peaks, fairly uniform in amplitude for corner modes when
_a_x_ $ , the corner modes tend to be fairly omnidirectional in
radiatio_ (as well as responsiveness).

VI.4 Average Radiation and Response of the Supported Plate in
Frequency Bands

In Section V.7, we indicated that the power absorbed by a
set of modes in a diffuse random noise sound field would be
determined by the average radiation resistance for the set of
modes in the frequency band under consideration. In this section_
we will compute the average modal radiation resistance using the
results of the preceding section.
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Figure VI.7.- Volume velocity cancellation for a "corner" mode.
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The major divisions between classes of modes were sketched
in Fig. VI.I. For kM_k a or _c0 c = c2/_c$, all modes are acousti-
cally fast. Since the AF modal radiation given in Eq. VI.3.5
is independent of azimuth ¢, we can immediately write the average

radiation resistance for AF modes on a plate for which _a_x, _y
to be

PoCAp ) (vl4 I)
Rra d -- (l__o/c_)lj2 > _0c . . .

At frequencies less than the critical frequency_ both edge
and corner modes must be included in the averaging. Referring
to Fig. VI.8_ the relative _umber of y- edge modes excited by a
band of noise is (2/_) sin -± ka/kb_ and the fraction of x- edge
modes is the same. The fraction of corner modes is of course

I - (4/_) sin-lka/k b. Referring to Eq. VI.3.11 and Fig. VI.8_
note that kM x _--kb in the expression for R_ r_d and kM _ k

we_Y
in the expression for R_ra d. Thus_ at frequencies bel_w
critical_ the average radmation resistance for edge modes is

Redge 8 _c P 1/2
rad = PoCAp 2 Ap (_/mc) (VI.4.2)

where _ = 2_C/_c, the acoustic wavelength at the critical
frequency and P = 2(@ x + Sv) is the panel perimeter. More
complete expressions are _worked out in the reference by
Maidanik.

It is possible to compute average values for the corner
mode radiation loss factor but it generally turns out that the
radiation from these modes is insignificant. To see this_ we
note that the maximum corner mode radiation resistance determined

by Eq. VI.3.13 would occur for KM, x = kb (or vice versa) to give
2

8 _c _
Rcorner c (Vl 4 3)
rad _ PoCAp _3 Ap _ " " "
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Figure VI.8.- Radiation classification of modes in k-space.
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If we assign this value to all the corner modes in the fre-
quency band (which is excessive, of course), and take the ratio
of edge to corner radiation resistance, we get

Redge
rad P

= __ (_/_0)3/2 (w.4.4)Rcorner
tad

Suppose we have a panel_ dimensions i x 2 ft. of .032 aluminum.
Four octaves below the critical frequency of 16 kc, this ratio
is

Redge

rad = _ 6 -- 5 • (VI.4.5)
Rcorner 64 1/16
rad

It is clear that the edge radiation will tend to dominate in
the AS region. This result tends to hold for most panels of
structural interest.
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VII. AN INTRODUCTION TO THE LITERATURE ON APPLICATIONS OF THE
ENERGY METHOD

VII.1 Introduction

The plan for this chapter is somewhat different from those
that have preceded it. Until now we have attempted to proceed
with the fairly careful and pedagogical development of a method
of analyzing the interaction of structures with sound fields.
In Chapter VI we described the way that one calculates the
energy input to a simply supported rectangular panel, using the
general development which preceded it. In the present chapter
we shall not delve into the details of the analyses, but rather
attempt to guide the reader through several published papers
which deal with one aspect or another of the response of struc-
tures to random environments. In most cases these developments
are based fairly directly on the analyses which have been pre-
sented here, but in some cases further developments have been
necessary and these will be pointed out in the course of the
discussion.

The papers and analyses covered here fall in five major
categories. They are: l) the acoustic response and radiation
of flat panels; 2) the response and radiation of orthotropic
and curved panels; 3) the effects of fluid loading on panels;
4) the response of panels to impact noise and other localized
excitations such as boundary layer turbulence; and finally
5) the transmission of vibrational and acoustical energy in
complex structures.

By describing a series of detailed analyses we do not
want to leave the reader with the impression that only ideal
structures are being considered. On the contrary, it is be-
cause there is much evidence, both theoretical and experimental,
that the average behavior of ideal and non-ideal structural
configurations are very similar, that an ideal structure can
be substituted for the real system that we are interested in
analyzing. Thus, for example, modal densities have been com-
puted for flat plates assuming supported boundary conditions.
The assumption is, that if the modal density depends on the
area alone, another panel with different boundary conditions
but possessing the same area will have sensibly the same modal
density. There is now considerable experimental evidence that
such is the case.
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In this connection there are several other parameters which
one would like to make similar hypotheses about, but there is at
present little direct confirmation that this can be done. For
example, in the preceding chapter we found there were modes
which radiated like strip radiators along the edges of the panel
with a fairly high radiation efficiency, while other modes
radiate only at the corners of the panel with fairly low radi-
ation efficiency. In real structures with non-idealized
boundaries, it may be that a particular mode shows combination
of such radiation behavior rather than simply one form or the
other. Experiments suggest that the average radiation behavior
nevertheless may still be computed by the idealized model.
There is, however, no theoretical evidence that will support
such a conclusion. Its experimental justification, however,
makes it very appealing as a way of calculating the radiation
from non-ideal panels for engineering purposes.

VII.2 Acoustic Coupling to Flat Panels and Beams

A fundamental study of structure sound interaction which
parallels closely the material presented in Chapter V has been
presented in a paper by Smith_,_ The response of a simple re-
sonator representing a single mode of motion to both pure tones
and band of noise are presented. Reciprocity arguments similar
to those in Chapter V are used to establish the relation be-
tween the energy of response, radiation resistance, and
directivity factors. It is not brought out in Smith's article,
but it was demonstrated in Chapter II that when many modes of
a structure are simultaneously excited to a similar degree,
then the noise and pure tone response of the structure are
approximately equal on the average. An item discussed by
Smith in his paper but not presented in this report is the
reradiation of sound, formulated as a resonant differential
scattering cross-section. In an expression for the cross-
section, the directivity factor enters twice, once in express-
ing the energy absorbed by the incident sound waves and again
in expressing the fractional amount of energy re-radiated in
the direction of interest.

Another approach to the problem by Lyon and Maidanik 2 re-
gards the interaction between a sound field and a structure as
a collection of two mode interaction problems. In this inter-
action, one mode is a structural mode and the other is a mode
of the room within which the sound field is confined. An

*In this chapter only, references occur in a numbered biblio-
graphy at the end of the chapter.
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analysis of the two mode interaction problem in this reference
reveals that the energy flow from one mode to another has cer-
tain analogies with a simple heat flow problem, primarily in
that the magnitude of heat flow is proportional to the dif-
ference in modal energies, and that the direction of flow is
from the mode of higher energy to one of lower energy. Nor-
mally the modal densities will be such that a single structural
mode at any one time is in contact with a large number of
acoustic modes. If these acoustic modes have similar energies,
which is the modal equivalent of a diffuse sound field, then
one can readily collect these interactions together to produce
response formulas such as given in Chapter V. The details of
the transformation between a two mode interaction and a multi
mode interaction are developed in the referenced paper. Par-
ticular emphasis is placed on the interaction between a sound
field and a structure, although the general results are appli-
cable to any two systems that can be defined as a collection
of normal modes of motion.

In this reference the radiation resistance is expressed
in terms of an inner product of the correlation functions of
the sound field and the structural motion. The reader may wish
to test the equivalence of this and the development of Chapter V
as an exercise. Experiments are described in which the response
of a simply supported beam to a reverberant sound field is
measured. The modal response in the beam is compared with
theoretical calculations. The calculations involve theoretical
computations of the radiation resistance of a simply supported
beam and measured values of the internal loss factor. The
radiation from a simply supported beam is of interest in the
panel response case as well since in Chapter VI we saw that
many panel modes radiate as though they were simply strip
radiators along one panel edge.

Above the critical frequency the beam wavelength exceeds
the acoustic wavelength, and an expression for the radiation
resistance similar to that developed for edge modes in Chapter
VI is derived. Below the critical frequency, the beam wave-
length is less than the acoustic wavelength and radiation from
the ends due to uncancelled volume velocity results giving a
radiation efficiency similar to that of the corner modes dis-
cussed in Chapter VI.

In another paper Maidanik3 has computed and measured
experimentally the response of ribbed panels to reverberant
sound fields. Maidanik uses the general expressions for the



response of a multimodal structure exposed to reverberant sound
fields developed in reference 2 and addresses himself in this
paper primarily to the estimation of the radiation resistance
of a simply supported rectangular panel. We presented the
analysis in Chapter VI for a rectangular supported panel when
the dimensions are large compared to an acoustic wavelength.
This assumption simplifies the analysis somewhat in that the
interactions between the uncancelled volume velocity elements
at the edges or corners can be treated independently. When the
panel size is smaller than an acoustic wavelength these simple
radiators interact and in this paper Maidanik has developed
rather carefully the effect of this interaction.

Maidanik comes to the conclusion, as we did in Chapter VI,
that below the critical frequency the sound radiation may be
directly associated with the edges of the panel. The radiation
efficiency then becomes proportional to the perimeter of the
supported panel or in the case of a large panel with many ribs
to the total edge perimeter produced by the panel edges and the
ribs. To support this conclusion Maidanik cites the results of
some previous experiments and carries out some new experiments
which are reported in the paper. In particular he applies the
results of his theoretical calculations to the radiation effi-

ciency of a large aluminum panel with semi-clamped edges which
was measured several years before. His own experiments were
carried out on a large panel with free edges, baffled, and
sealed with tape to prevent acoustic leaks from one side of the
panel to the other. In addition to this several steel beams
were cemented to the panel to produce additional structural
discontinuities. In both cases Maidanik finds experimentally
that the radiation efficiency of the panel may be accounted for
through the simply supported edge condition assumed in the
analysis. These results suggest a certain insensitivity of the
radiation efficiency to the details of the edge condition, al-
though as we shall see, analyses by Lyon and Smith have indi-
cated some sensitivity of the radiation efficiency to edge
conditions. Whether one can significantly affect the radiation
efficiency by careful design of edge discontinuities is still
an open question.

The study of finite panels has suggested that the major
source of radiation below the critical frequencies arises from
the interaction of the bending wave with an edge discontinuity.
In particular, those modes of motion which result in a trace
wavelength along the edge greater than the acoustic wavelength
are responsible for most of the radiation. In order to look at
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the effects of varying edge conditions on this source of radi-
ation without the complexity or difficulty of finding normal
modes for arbitrary boundary conditions, a study was initiated
of the acoustic power radiated when a beam is placed in contact

with a plate supporting a reverberant vibrational field of
acoustically slow bending waves. _

In this analysis the beam is defined by its torsional and
bending rigidities and its mass per unit length. A simply sup-
ported line is characterized by infinite mass and bending
rigidity and vanishing torsional rigidity. A clamped line is
characterized by infinite bending and torsional rigidities.
Note that neither condition is equivalent to the edge support
of a plate since in that situation the plate does not continue
beyond the boundary and there is no moment impedance presented
to the plate at the edge. The results of this analysis show
that the radiation resistance per unit length of perimeter for
a panel is the same for a simply supported and a clamped edge
but that the radiation resistance is just twice that of an
edge-supported panel analyzed by Maidanik. It has also been
suggested by some that the radiation from a panel with support-
ing ribs should undergo a marked transition at the critical
frequency of the supporting rib. An analysis of this effect
also presented in the paper indicates that as long as the mass
of the rib is sufficiently large to restrict the motion of the
panel the critical frequency of the supporting rib is not an
important parameter in the problem. Experimental evidence
does suggest that when the bending wavelength on the panel be-
comes large enough so that the ribs begin to move with the
panel then the radiation efficiency of the structure is sig-
nificantly decreased.

Another extension to edge radiation analysis has been made
by Smith5 who calculated the radiation due to a simple bending
wave normally incident on a supported line with arbitrary moment
impedance. Smith's results agree with those of Lyon and
Maidanik in that the radiation from a clamped edge is found to
be just twice that due to a simply supported edge with no moment
communication. He also found, however, that the radiation from
such a line can be made to assume many intermediate values as
the impedance parameter is varied and in particular can be made
to vanish for a particular value of mass reactance. This analy-
sis is arrived at by considering the volume velocity cancella-
tion and in fact the result of vanishing radiation efficiency
results from a net uncancelled volume velocity of zero at the
edge. This condition holds only at one frequency, however, and
only for normal angles of incidence. Whether one can minimize
the radiation of a real panel by a suitable selection of edge
impedance remains to be seen.
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VII. 3 Response of Cylindrical Structures to Sound Fields

Many structures of engineering interest such as aircraft,
spacecraft, and submarines are constructed of stiffened
cylinders. Since the acoustic response and radiation behavior
of these structures is of considerable engineering interest one
of the important extensions of the study of flat panels described
in the previous section has been to include the effects of cur-
vature on the radiation and response behavior. Heckl U studied
the modal density of cylindrical shells and the average impedance
which they present to a point force perpendicular to the surface.
Some of his results that are pertinent to the acoustic response
problem are: a) in modal density and average mechanical behavior
the cylindrical shell tends to act like a flat plate above the
so-called ring frequency, i.e. the frequency at which the cir-
cumference of the shell is equal to a longitudinal wavelength
in the shell material; b) below this frequency the modal density
is an increasing function of frequency with an average input im-
pedance greater than that of the flat plate of equivalent area.
Heckl confirms these theoretical results with a series of ex-
periments in which he measures individual resonant frequencies
and also counts the accumulated number of modes to derive the
modal density. For the cylinders he used it was only possible
to measure modal density below the ring frequency.

In a paper which parallels the approach in reference 3
Manning and Maidanik7 have computed the theoretical radiation
efficiency of a finite simply supported cylinder with baffled
ends and compared these calculations with the measured radiation
from a steel cylinder with circumferential stiffening frames.
Experimentally the radiation efficiency of the finite cylinder
shows some similarities to that of the finite supported plate.
Above the critical frequency the radiation efficiency is nearly
unity and it drops off below the critical frequency. At the
ring frequency, however, there is an abrupt peak in the radia-
tion efficiency and an octave or so below the ring frequency
there is a sudden dropoff in radiated acoustic power.

In their analysis, the authors are able to justify this
behavior by a consideration of the following effects. First,
because a cylinder is like a flat plate which is closed upon
itself there is no radiation corresponding to the "corner
modes" since now the uncancelled volume velocity patches are
adjacent to each other. Secondly, since there are no axial
discontinuities on the cylinder the edge radiation correspond-
ing to axial trace wavelengths greater than the acoustic
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wavelengths do not occur. Modes which have circumferential
trace wavelengths greater than the acoustic wavelengthsare
moving in a nearly axialdirection and consequently are sig-
nificantly affected by the stiffening effects of curvature.
The net tendency is for an upward shift in their resonance fre-
quency which depletes the lower frequency region of radiating
modes. This is the reason for the abrupt dropoff in radiation
at low frequencies. These modes which are shifted upwards tend
to collect at the ring frequency with a helical wave speed in
excess of the speed of sound. Thus although they occur at a
frequency below the panel critical frequency, they are acous-
tically fast and have a high radiation efficiency. This is the
reason for the peak in radiation efficiency at the ring
frequency.

The relative number of acoustically fast and circumferen-
tial edge radiating modes is determined by the ratio of the
ring frequency to the acoustic critical frequency. When these
are within an octave or so of each other the acoustically fast
modes tend to dominate the radiation behavior. When this is
the case the entire surface of the structure radiates sound and
the edge discontinuities are not of great significance. Any
axial stiffening, however, due to stringers will affect the
distribution of acoustically fast modes and the radiation
behavior will be affected. When the ring frequency is far be-
low the critical frequency, as it is for the structures
mentioned at the beginning of this section, then circumferen-
tial edge radiation is a significant contributor to the total
radiation efficiency, and the number of ring supporting frames
will have a bearing on the radiation behavior of the structure.

The decrease in radiation efficiency at very low fre-
quencies is experimentally not as great as anticipated from
the theoretical analysis. This appears to be due to forced
radiation by nonresonant modes which are excited below their
resonance frequencies. Manning and Maidanik have made an es-
timate of the forced radiation from a cylinder in the reference
but the calculation is appropriate to a flat plate, where the
forced radiation occurs due to modes which are excited above
their resonant frequencies and act therefore in a mass con-
trolled fashion. The proper radiation behavior for forced
motion has not been carried out for the cylinder to date.

Two estimates have recently been made of the response of
a space vehicle to an acoustic noise field. Both approaches
use the energy technique developed in the preceding chapters
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and to some extent both rely on the structural configuration of
the spacecraft for evaluation of radiation resistance and in-
ternal damping parameters. Neither one, however, takes the
effects of curvature on the structural mechanics into account in
such detail as does the discussion in reference 7.

In the first of these analyses, Franken and Lyon 8 describe
the vehicle as a combination of long, narrow, flat panels. The
effects of curvature are not included in the analysis. The long
panels are generated by infrequent ring stiffeners and a large
number of axial stringers which give stiffening to the skin.
The radiation response is produced by edge radiating modes in
the axial direction. The geometry of the panel produces a
"clumping" of modes at panel cross-resonances in the smaller
dimension. There is some evidence from the experimental values
which are cited which indicate that peaks in the response are
produced at these cross-resonance frequencies.

Estimates of absorbed power from the sound field are made
for three different situations: a purely axial travelling
wave field, a purely diffuse wave field, and a weighted dis-
tribution which emphasizes energy at angles near grazing inci-
dence for the panels. The analytic results do not indicate any
significant difference in the last two distributions of inci-
dent energy, but for a purely axial wave field, larger peaks in
the energy spectrum are produced at the cross-resonance fre-
quencies. The results of the calculation are in general agree-
ment with the field data, but they cannot of course predict the
general rise in energy levels near the ring frequency and they
suffer from a certain arbitrariness because of the necessity to
assume an internal damping.

An analysis of a similar structure, the second study re-
ferred to above, by Dyer9 attempts to take into consideration
more fully some of the effects of curvature. Dyer uses the
flat plate edge mode radiation efficiency derived in Chapter VI
and assigns to the edges of the panel a certain average absorp-
tion coefficient, By doing this, the ratio of radiation re-
sistance to total damping becomes independent of the perimeter.
The modal density of the structure, however, is that of a
cylinder as derived in reference 6 by Heckl, and it is this
value that he uses for the structural modal density. The other
effect of curvature is his assumption that the sound field on
different segments of the structure is uncorrelated due to
shielding effects of the structure. The incident acoustic
energy is assumed to arrive over a small cone of angles near
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grazing. He does not include the possibility of modal clumping
at the cross-resonances of the panels as was done by Franken and
Lyon. He compares his theoretical results with the same field
data used in reference 8, with a general agreement between ex-
perimental and theoretical results.

The relative success of these rather different calculations

suggests a certain insensitivity of the response to the details
of the behavior of the radiation efficiency. There is, however,
in the field data a notable tendency for the energy to have a
maximum near the ring frequency at 500 cycles per second. It
therefore appears necessary to include the effects of curvature
on modal dynamics and the regrouping of edge radiating modes as
Manning and Maidanik have done if a better estimate of the
radiation of cylindrical structures is to be achieved.

VII._ Fluid Loading Effects on Panel and Response and Radiation

The radiation of sound by vibrating structural panels in
contact with a heavy fluid medium is of concern to the design-
ers of ships and submarines. Basically, these structures are
similar to aircraft and spacecraft vehicles in that they con-
sist of flat panels stiffened by reinforcing ribs. The primary
difference occurs because of the very large influence that the
fluid reaction pressures produce on the mechanical and radiation
behavior of the structures. Recent studies by Maidanik and
Kerwin lO on the response and radiation of orthotropic plates
including fluid loading effects have shed considerable light on
the behavior of these panels.

The structural model that Maidanik and Kerwin have chosen
is an orthotropic plate with differing bending rigidities in the
two major directions. The effects of curvature as such are not
specifically included in the discussion. The fluid loading for
a specific frequency and wavelength of motion on the panel, not
necessarily the wavelength corresponding to free-travelling
waves, is computedby solving the fluid acoustic wave equation
and calculating the reaction fluid pressure on the panel, At
any frequency, wavelengths on the panel greater than the
acoustic wavelength have a real, resistive load placed on them
by the fluid. Wavelengths less than the acoustic wavelength
are loaded by a mass-like term resulting from near-field, non-
radiated acoustic pressures.
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With heavy fluid loading these reaction pressures have the
effect of heavily damping wave motions greater than the acous-
tic wavelength and of adding considerable mass to the effective
plate mass at wavelengths smaller than the acoustic wavelength.
This mass reaction at a particular frequency has the effect of
slowing down the free wave on the panel, often to a sizable
fraction less than would be true for the same panel in vacuum.
Because of these slower free waves the resonance frequencies of
finite panels are reduced. At any particular frequency the
wavelength of motion is reduced. The radiated power is there-
fore affected in two ways. First, the number of radiating
modes in any frequency interval is increased because mass load
increases the modal density of the plate. Secondly, because
the bending wavelength is reduced, the radiation efficiency of
edge modes will be reduced since the effective width of the
strip radiators along the edge is reduced.

At any frequency, the effective fluid loading on the power
absorbed by a point source, which is of concern for impact load-
ing and for boundary layer noise studies, is to reduce the
power absorbed by the panel. This is because the input point
susceptance is reduced. This arises from two causes: one is
that the input point resistance is increased by the fluid load-
ing and the second is that an additional mass reactance term
becomes effective. There are many aspects of the fluid loading
problem remaining to be investigated, and they are at present
receiving considerable attention. The problem is inherently
more complicated than that of light fluid loading, but the
energy method has enabled one to compute many of the important
effects already, and there is reason for optimism that one can
do equally well in the future.

VII.5 Response and Radiation of Panels Excited by Boundary
Layer Turbulence

The response of panels which are excited by pressure
fluctuations in boundary layer turbulence and the resulting
sound radiation from these panels, both inward to the structure
interior and outward to the medium, are a present day concern.
The ship designer is concerned because of the sound radiation
external to the hull of his vessel and internal to the sonar
dome onto pressure transducers associated with sonar receivers.
High speed aircraft and manned vehicles have high internal
sound levels due to the very high pressure fluctuations which
result in high speed flight. Despite the very wide differences
in the two sets of problems it is possible to treat them with
similar basic analyses, and it is the development of these
analyses which we wish to trace in this section.
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It has become common practice to describe the pressure
fluctuations in boundary layer turbulence by a convecting and
decaying correlation field. The response of a simple string
to such a correlation field was first studied by Lyon II. In
that study several features were apparent in the response which
have turned out to be significant in the behavior of panels ex-
cited by similar convected pressure patterns. When the con-
vection speed is quite low compared to the speed of the struc-
tural wave the response is that due to a series of random
independent impulses on the structure, the so-called "rain on
the roof" excitation. At higher speeds when the convection
speed can equal the structural wave speed, a very large response
will result if the distance over which the excitation is con-
vected coherently is a sizable fraction of a structural wave-
length. This condition does not occur for ship structures, but
can be quite important for aerospace structures.

The one-dimensional treatment has since been furthe_ modi-
fied and expanded by Maidanik 12 and by Maidanik and Lyon 3.
The study of reference 12 was undertaken because of the reluc-
tance on the part of some people to accept delta function
spatial correlation as appropriate to boundary layer turbulence
as was proposed iD reference II and used subsequently for panel
response by Dyer 14. Maidanik computed the response of a string
to several forms of spatial correlation which could be made to
go to a delta function by a limiting process of a shape para-
meter. As might be expected, in every case he found that as
long as the spatial correlation was small compared to the
structural wavelength the delta function approximation gave the
proper result. He did not consider specifically the problem of
whether or not the actual spatial correlations in boundary layer
turbulence could be approximated by any function which could be
made to approach the delta function with the variation of some
parameter. It now appears that it is impossible to make such a
correspondence since the pressure correlation in boundary layer
turbulence appears to have zero net area. 15 This causes no
fundamental difficulty as we shall see in our discussion of
reference 15. Maidanik does extend the earlier results by not
assuming that the correlation pattern decays in a distance
small compared with the length of the string and consequently
has expressions which include explicitly the effects of the
turbulent pressure fluctuations passing over the edge of the
structure. This tends to be an academic point for most struc-
tures since the distance between edges is large compared to the
distance that the correlated patch travels before decay. The
discussion in reference 13 is primarily aimed at refining the
estimates of modal response in reference 13 and forming a new
comparison with the experimental results which were reported in
the earlier paper.
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The application of this pressure correlation pattern and

structural model to flat elastic panels was carried out byDyer . Dyer assumes that the distance over which the coherent
patch is convected is small compared to the length of the panel
over which the turbulence flows. In the analysis it turns out
that the results are very similar to those developed for the
string, if one interprets the structural wave speed as the
trace wave speed of the particular mode under investigation in
the direction of convection. Dyer studied the response of the
panel to turbulent excitation when the trace wave speed was
greater than equal to and less than the speed of turbulent con-
vection. Since then these three classes of modes have been

termed hydrodynamically fast, hydrodynamically coincident, and
hydrodynamically slow. Dyer computes the mean-square response
of a mode and plots its dependence on the damping loss factor.
He finds that for high frequencies or slowly decaying turbulence
that the mean-square response can become dominated by its forced
components and be independent of the loss factor. 0me should be
cautioned against interpreting this result as an insensitivity
of the response to damping since the panel mode may still be
highly resonant and, in the frequency range of its resonance,
have a response which is very markedly dependent on the damping.

In a more recent report, Ffowcs-Williams and Lyon have
considered this problem again, taking into account a better
understanding of the pressure correlation pattern and of the
sound radiation behavior of multi-modal flexible panels. The
considerations of correlation effects indicate that the effec-
tive correlation area of the turbulence should be considered to
be a function of the ratio of displacement thickness of the
turbulent boundary layer to the free bending wavelength of the
structure at the frequency of interest. It turns out that pre-
vious estimates of this relationship have been reasonably
correct, but over a range of 3 decades in frequency approxi-
mately a i0 db variation can result from this correlation
effect.

The radiation of sound from the panel is handled in two

parts. The radiation from forced waves or non-resonant panel
motion at wavelengths greater than the acoustic wavelength is
computed on the basis of an infinitely extended plate. The
frequency spectrum and overall power level for this portion
of the radiation is determined. The radiation from resonant
modes below the critical frequency is computed based on the
radiation efficiencies developed in Chapter VI and in reference
3, all calculations being carried out for the case of hydro-
dynamically fast modes, which means high frequencies and/or
flow convection speeds.
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The mechanical power absorbed by a panel from turbulence
convected at a speed greate_ than the _anel bending wave speed
has been studied by Ribner Ib and Lyonl7. Ribner computed the
panel response due to convected and non-decaying turbulence and
found, as one would expect, that free wave excitation of the
panel resulted only for waves whose bending speed was greater
than the speed of convection, which places a high frequency
limit on the excitation spectrum By retaining the decaying
formalism, Lyon _ was able to place a criterion on the distance
over which the eddy must remain coherent in order for the tur-
bulence to behave in an essentially non-decaying fashion. It
turns out that this is quite a long distance and that in prac-
tice the lower frequency part of the spectrum will accordingly
be independent of the decay parameter and determined primarily
by the hydrodynamically coincident wave field.

VII.6 Transmission of Vibrational and Acoustic Energy in
Multi Element Structures

In this section we shall briefly summarize two related
areas of vibration and sound transmission technology. The first
is the exchange of energy among purely mechanical systems. When
only two systems are involved, the energy sharing process is
quite similar to coupling between a sound field and a structure.
When more than two elements are involved, particularly when
there is a transmission of energy through one element, then the
formalism has to be recast and the previous discussion extended.
This topic is also considered here. Finally, an interesting
study of the relationship between impact noise and acoustic
transmission loss is included as an example of the value of
reciprocity "thought experiments" in the analysis of complex
acoustic and mechanical interaction problems.

Throughout the preceding discussion we have seen the cen-
tral role that the radiation resistance of a structure plays in
its interaction with an acoustic field, both in determining the
amount of power radiated by the vibrating structure and in
determining the amount of power it will accept from a diffuse
reverberant sound field. It has been demonstrated by Lyon and
Eichler 18 that a similar relationship holds between two
mechanical structures which are coupled. Starting with the
general considerations of reference 2, they developed the ex-
pressions for the interaction between beams and plates and
between attached plates, resulting in expressions for the
energy ratios in the two attached structures when one of them
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is driven by random noise source. In this analysis the coupling
loss factor, which can be related to the input impedance func-
tion of the two structures at their region of attachment, plays
the part of the radiation resistance, while the internal damping
of the structures is represented by internal loss factors. Ex-
periments are described and carried out in which the energy
ratio of a plate and beam and of two plates welded together are
measured. Good agreement with the theory is found for broad
bands of noise when many modes of vibration participate in the
energy-sharing process.

When the bandwidth of excitation is more restricted, fewer
modes contribute to the response and a larger amount of vari-
ability from the theoretical average is determined experiment-
ally. Using a statistical model for the excitation levels of
the structural modes and the location of resonance frequencies
of the structure, the variability in response levels is com-
puted and presented in the form of curves of the confidence
coefficient for certain interval estimates of the response ratio.

The earliest study of transmission through a multi element
system was that presented for the noise reduction of a flexible
panel due to Lyonlg. In this paper the noise reduction afforded
by a single flexible panel on a rectangular box is computed in
three different frequency ranges. At very low frequencies the
panel and the enclosed volume of the box behave in a stiffness
controlled fashion, and the noise reduction, i.e., the logarithm
of the ratio of external to interior pressure is frequency in-
dependence. In a slightly higher frequency range the interior
volume is still stiffness controlled but the panel modes now
come into play. Those which have a net volume velocity dis-
placement produce pressures within the box due to compression.
In this frequency range the noise reduction fluctuates greatly
and may in fact become negative at some frequencies, since
pressure amplification can result.

Finally, in the high frequency range where the panel and
the interior box volume are multi modal in behavior one can
compute the noise reduction on the basis of "classical" forced
wave theory, as well as the interior sound pressures due to
resonant panel vibration and edge and surface radiation. In
this regime one cannot say generally whether forced or reso-
nant noise reduction will dominate, but for small panels it
may frequently occur that resonance vibration can cause
smaller amounts of noise reduction than would be anticipated
under the classical theory.
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The analysis in reference 19 does not include properly the
back reaction of the interior volume on the panel. That is,
the build-up and level in the interior volume is not assumed to
affect the rate at which energy is accepted by the panel from
the exterior sound fields. A more complete analysis of the
energy sharing in multi stage systems has been carried out by
Eichler20. Eichler develops a general formalism which parallels
the development in reference 2 for multi stage systems and
applies his analysis to the noise transmission through a rec-
tangular box with flexible walls. Due to his choice of para-
meters and available experimental conditions he is not able to
show a significant discrepancy between his more complete ana-
lysis and the approximate analysis of reference 19. His
experimental results, however, do represent the most complete
study of the noise reduction of small metal boxes which has
been reported to date in the literature.

When a panel vibrates at frequencies above its critical
frequency the input impedance from a point source can be re-
lated to the acoustic transmission because both rely on the
excitation of free waves, in one case by the point impact and
in the other by a reverberant sound field. Using a reciprocity
argument Heckl and Rathe 21 have been able to compute a simple
relationship that should exist between the transmission loss of
a structural panel and the impact noise isolation of that same
panel. Independent measurements of impact noise level and
transmission loss can therefore be used to detect anamolous
behavior, i.e., departure from the ideal relationship. This
will occur either because the free wave relationship is dis-

turbed by a resilient material placed under the impacting
point or because flanking transmission occurs in the acoustic
transmission loss measurements. When this happens, the wall in

question is not the only source of energy in the second space.
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APPENDIX I: AVERAGES OVER DIRECTION OF WAVE INCIDENCE

In assessing the average coupling between sound waves and
vibration of plane structures, one desires to form averages
over the direction of incidence of the wave. Typically, the
response to a pure-tone plane wave, with wavenumber vector

k = k_ (where _ is a unit vector), is a function F(k ) where
_s is--the vecto-rial projection of k onto the plane _9 the
sZructure (the "trace wavenumber")_ The unit vector _ specifies
the direction of wave propagation. One wants the average of
F for all directions corresponding to incidence from above the
plane (2_ sterradians of solid angle) with each direction given
equal weight. The average over direction 9 must be transformed
into an average over the trace wavenumber k on the plane

The average value of F is formally equivalent to the ratio
of integrals

where d_ denotes the differential of solid angle, equal by
definition to the differential of area on the unit sphere.
When the k vector is expressed in polar coordinates (k, 8,¢)
with the _ axis (the normal to the plane) as polar axis
(Fig. AI.I), the differential of solid angle is

d_ -- sin@ d8 d¢ .

Let the trace wavenumber k be expressed in plane polar coordi-

nates (ks,_) where --s

k s = k sine . (AI.2)

Then, one can readily show that the transformation of coordinates
from _ to k is described by the differential relation

_S

k2 cose d_ = k s dk s de -dk s ,

where dk is the differential of area in the k plane.
EquationSAl.l can be rewritten --s

<F>_ = f [F/cos0] d_ks/2f dt_ . (AI.3)

2o7

.<



For wave directions limited to incidence on one side of

the xy plane, one has

dO = 2_ ster-radlans .

Moreover, to each direction _ there corresponds one k ; its
magnitude does not exceed k _Eq. AI.2). The whole range of

for incidence from one side corresponds to the whole range

_f k lyin_ within the circle of radius k in the _s plane
(Fig_ AI.I); for these ranges, one has

= •
Equation AI.3 can now be rewritten as an average in the _s plane:

1 </cose>ks (AI4)<F(_s)>_ (one side) = 2 _ (O<ks<k) "

where cos@ is derivable from Eq. AI.2. The parenthetical sub-
scripts indicate the range of the variables.

In some situations, F(ks) depends only on one cartesian
component of k. This is the case when the structure is a beam.

Suppose F is a function only of kx, the projection of k ento
the x axis. Then, Eq. AI.4 can be reduced to an average in kx.
However, the derivation is more convenient if the k vector is
expressed in new polar coordinates (k,_,_) wherein--_ is the
polar angle measured from the x axis (rig, AI.2). Then the
differential of solid angle is

d_ = sin_ d_ d_ .

Since the trace wavenumber kx is given by

k = k cos_ .
X

the transformation of coordinates is described by

kay_ = - dkx dp .

Wave directions for incidence from one side of the xy plane
correspond to the ranges of variables:

Since F is independent of _, that part of the integration in
Eq. AI.I can be carried out, leaving the desired expression:

k

<F(kx)>_ (one side) = _fF dkx/2_k = <F> k (_k<kx<k) . (AI.5)
-- -k x
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Figure AI.I.- Wavenumber plots; trace wavenumber for xy-plane.
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Figure AI.2.- Wavenumber plots; trace wavenumber for x-axis.
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APPENDIX II: EVALUATION AND APPROXIMATION OF A COUPLING INTEGRAL

The analysis for coupling between sound pressures and
vibration of plane structures (panels or beams in a plane
baffle) requires values for integrals in the form:

_ _ikxxI = _-I e sin kmX dx , (All. l)
O

where km _ = my with _i?_ integer. More specifically, onedesires to evaluate . . and weighted definite integrals of
it in the form

b

_K(kx) Ill 2 dkx , (AII.2)
a

where K is some smooth, well-behaved function. Here we evaluate
I and develop some approximations for the weighted integral.

When the exponential form for sin k x is substituted in Eq. AII.I,
the integrand contains two exponential terms, each of which is
integrated readily. If each integral is treated separately, the
value of I is found as a sum of two parts

I = II + 12 ,

sin _(kx ´�È�I 1 = iexp[-i½(kx �8(kx �<�P�'

12(kx,km) = -ll(kx,-km) . (AII.3)

The identity

-i_ae-ia 11
- = 2ie sin_a

When the restriction, k _ = my with m an integer, is introduced
into Eq. AlI.3, a close_ form can be found for the sum of the
two terms. The form is different for even and odd values of
m. The magnitude of I is
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(AII 4)
2 ' "

COS

where the sine function is to be used if m is even, _nd t_e
cosine if m is odd. The ratio is indeterminate at kx = km, at
which points the correct value

I I 1 (AII.5)
Ik2 2 -

X = k m

is found by lZHopitalZs rule.

As a typical case, take a large value of m. The squared
magnitude, IIf , is an even function of kx which oscillates
between zero and an envelope determined by the denominator of
Eq. AII.4A (See Fig. AII.1.) The envelope_is f_at near the
origin k_<<k_)_ rises to a singularity at k_ = k_, and falls
rapidly f_r l'_rger values of kw. At the sl_gularlty of the
envelope, IIl_ rises to a finiSe maximum value (Eq. AII.5)
which is much larger than other local maxmma. For example,
the next largest extrema are the minor peaks neighboring
the major peak, which occur at

it _ollows readily from Eqs. 11.4 and 11.5 that the value of
IIl is there about 1/22 of the value at the major peak.

Analytical Approximations

In a weighted integral of III2, such as Eq. AII.2, rather
simple approximations can be used if the weighting function
K(k_) is slowly varying in comparison with IIl. Different
appgoximations are appropriate to different ranges of k.
The following approximations are good for large values _f m.
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k2 2i) x < I
In a narrow range near the origin, ill 2 is

approximately constant. The analytical approximation is different
for even and odd values of m:

fKIIl 2 fK × _0, m even }dk x "_ dk x k$/km2 _2, m odd (AI1.6)

2) broad range of k2x << k2"m" _n an integral over a range

of k that includes several of the minor peaks, one may approxi-
mateXIll _ by one-half of 8he valueoof its envelope, since the
average value of both sin- and cos- over each single loop is

1/2. No distinction between odd and even values of m is
necessary. If, further, k <<k 2, the envelope can be approxi-
mated by a 9onstant; this _urt_er approximation is fairly
good if kx< _ km:

PjKII 12dkx _ (2/km2_2) rjK dkx, all m. (AII. 7)

3) range of k x including km: When the range of k X

includes one of the major peaks of IX ]2, esther -+k , the value
of the integral is usually dominated by contribu$i_ns from the
neighborhood of that peak. This situation is demonstrated
by the uniformly weighted integratal,

flzl 2 dkx.
When the limits of integration include only the major peak,
i.e.,

km_ - 2_k< kx_ _< km_ + 2_ .

The value of the integral is 90 percent of the integral over the
semi-infinite range,

OO

o lZl 2 dk . (Azz.s)
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These characteristics of 1112 suggests that it can usually be
approximated by a pair of 6-functions of equal strength,

I11 2 _ (_/2_)[6(kx-km) + 8..(kx+km)] , (AII.9)

if the range of integration includes either ±k_ and the
weighting function K(k_) does not have large p_aks at
other points. The corgesponding integral approximation is

kx>k m

fKlZl dkx : K(km).
(AII.IO)

-km<kx<k m

A similar approximation applies to integrals including kx : -km.

2 2
4) broad range of kx>>k_: In an integral over a broad

range of large values of k , not including either major peak of
IIl_, an approximation similar to the second approximation

above is appropriate. _II _ _an be approximated by one-half
of its envelope; when k_ >>k_, the analytic expression of the
envelope simplifies. T_e integral approximation for positive
k is
X

kx>k b
and a similar one holds for negative kX"

Small Mode Numbers m

Although the function 111 2 has essentially similar characteristics
for all large integers m = k_/_, its character is somewhat
modified when m is small. T_e modifications are particularly
marked for m = 1 and 2; graphs of the functions of these
cases are given in Fig. AII.e. For m = 2, there are no minor
peaks between the major peaks. When m = l, the major peaks

are merged into a single broad peak centered on kx = 0.
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Some changes in the analytical approximations are required
to reflect these differences. The first and fourth approxima-
tions (Eqs. All.6, All. If) are correct for all m. The second
approximation is inapplicable to m = I and 2, because no such

range of the variable exists. The third approximation (Eq. AII.IO)
is still correct if the lower limit of integration is set at zero.
In explanation, note that Eq. AII.8 is correct for all m, as is
readily shgwo_by Parseval's theorem for Fourier transforms
Moreover, |I| _ is small for kx>k m for all m. These facts suffice
to support the generalization of Eq. AII.IO.
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